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Abstract 

HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN K (HNRNPK) OVEREXPRESSION 

AND ITS INTERACTION WITH RUNX1 IN ACUTE MYELOID LEUKEMIA 

 

Marisa Janelle Lynne Aitken, B.S. 

Advisory Professor: Sean Post, Ph.D. 

 

Acute myeloid leukemia (AML) is an often devastating hematologic malignancy with 5-

year overall survival lingering near 20%.  Acquiring a deeper understanding of molecular 

underpinnings of leukemogenesis will provide a basis for developing more effective 

therapeutic strategies for patients with AML. 

Here, we identified overexpression of hnRNP K as a recurrent abnormality in a subset 

(~20%) of AML patients.  High levels of this RNA-binding protein associated with inferior clinical 

outcomes in de novo AML.  Thus, to evaluate its putative oncogenic capacity in myeloid 

disease, we overexpressed hnRNP K in murine hematopoietic stem and progenitor cells isolated 

from fetal liver cells (FLCs).  We revealed that hnRNP K-overexpression alters self-renewal 

capacity and differentiation potential of these cells in vitro.  Such findings were recapitulated 

in vivo, as murine recipients of hnRNP K-overexpressing FLCs developed fatal 

myeloproliferative phenotypes.    

To elucidate mechanisms by which hnRNP K overexpression causes myeloid 

neoplasia, we took an unbiased approach utilizing RNA-immunoprecipitation sequencing 

(fRIP-Seq).  Among RNA transcripts interacting with hnRNP K was RUNX1—a pivotal 

transcriptional regulator of definitive hematopoiesis commonly mutated or translocated 

in AML.  Consensus hnRNP K binding sites were identified in the 5’ UTR and near the 3’ 
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splice site in intron 5-6 of RUNX1.  Fluorescence anisotropy studies confirmed these 

interactions were direct, and abrogated when hnRNP K binding sites within RUNX1 were 

mutated.  Manipulating hnRNP K expression in human cell lines and murine FLCs 

substantially altered RUNX1 splicing surrounding exon 6.  RNA-sequencing of FLCs 

confirmed these data, exposing RUNX1 as a significantly differentially spliced entity in 

the context of hnRNP K overexpression.  Importantly, the protein product of this spliced 

product (RUNX1ΔEx6) exhibited disparate transcriptional activity in reporter assays 

compared to full-length RUNX1.  Furthermore, we identified KH3 as the hnRNP K domain 

most critical for these splicing alterations; deletion of KH3 markedly abrogated hnRNP K 

overexpression phenotypes in vitro.   

In sum, we established hnRNP K as an oncogene in myeloid leukemia that binds 

RUNX1 RNA, altering its splicing and subsequent transcriptional activity.  These findings 

shed light on a mechanism of myeloid leukemogenesis, paving the way for drug 

discovery efforts to improve outcomes for patients with this disease. 
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1.1 Acute myeloid leukemia 

Acute myeloid leukemia (AML) is a devastating hematologic malignancy wherein normal 

hematopoiesis is superseded by rapid proliferation of immature myeloid cells.  In adults, AML is 

the most common acute leukemia, and the annual incidence in the United States ranges from 3-

5 cases per 100,000 people.1, 2  While the median age of diagnosis is 70 years, this disease is 

also found in children and young adults.3, 4  AML is responsible for most leukemia-related deaths 

in the United States, where over 10,000 patients died from this disease in 2019 alone.5  

Hematopoiesis, the process of blood development, occurs in the bone marrow.  Through 

exquisitely orchestrated processes of self-renewal and differentiation, hematopoietic stem cells 

(HSCs) eventually give rise to all of the cellular components of blood.6  These include 1) red 

blood cells (RBCs), responsible for delivery of oxygen to tissues, 2) white blood cells (WBCs), 

used to combat infection, and 3) platelets, which aid in blood clotting, or hemostasis.  In leukemia, 

aberrations in HSCs, or their slightly more mature progeny, result in unrestrained proliferation of 

immature WBCs.  These rapidly dividing cells fill the bone marrow, usurping the space in which 

normal blood cells are made.  As these malignant cells crowd out normal hematopoiesis, 

production of RBCs, WBCs, and platelets becomes severely compromised.  This leads to 

anemia, leukopenia, and thrombocytopenia, respectively.  These are responsible for the major 

clinical manifestations of the disease—all of which can be life threatening:  infection (due to 

leukopenia, specifically neutropenia), bleeding (due to thrombocytopenia), and organ failure (due 

to anemia).7   

AML derives its name from the lineage of cells from which it stems.  White blood cells are 

grossly categorized into either myeloid or lymphoid lineages.  Acute leukemias of lymphoid 

lineage are referred to as acute lymphoid leukemias (ALL), while those of myeloid lineage are 

acute myeloid leukemia (AML).    

AML is characterized by several recurrent chromosomal and genetic aberrations.  These 

provide insight not only into the underlying biology of the disease, but can also be used in some 



www.manaraa.com

  3 

instances to provide prognostic information and to guide treatment decisions.  For example, a 

subtype of AML known as acute promyelocytic leukemia (APL) is defined by a translocation 

between chromosomes 15 and 17 (t(15;17)).8, 9  This chromosomal abnormality results in the 

formation of a fusion protein known as PML-RARA, which largely contributes to the disease.10, 11  

Prior to the late 1980s, APL was a universally fatal subtype of AML.12  Due to concerted efforts 

to understand the biology of PML-RARA, incredibly effective APL treatments have been tailored, 

and this disease is now almost universally curable (>97% 5-year overall survival).13, 14    

Another subtype of AML with generally fair prognosis includes those with recurrent 

cytogenetic abnormalities are associated with core-binding factor AML (CBF-AML).  This subset 

of AML includes t(8;21) and inv(16), which lead to the creation of the fusion genes RUNX1-

RUNX1T1 and CBFB-MYH11, respectively.15-18  CBF-AML has a high complete response rate 

(80-90%) to standard chemotherapy with 3 days of anthracycline along with 7 days of cytarabine 

(3+7).19-22  In addition, 5-year overall survival (OS) in CBF-AML is more than 60% in younger 

patients.19, 20  Even in older patients with CBF-AML, 5-year OS is near 30%.23 

Unfortunately, not all subtypes of AML have seen this same progress.  Taken as a whole, 

patients under age 60 have a 5-year survival of approximately 40%, while older patients have a 

much lower (~10%) 5-year survival.3, 24, 25   

Mutations in AML can also be used for prognostication and/or to tailor therapy.  For example, 

NPM1 mutations (in the absence of co-occurring mutant FLT3) or biallelic CEBPA mutations 

have been shown to confer a relatively fair prognosis.26, 27  Patients harboring other mutations, 

such as those in FLT3, IDH1, or IDH2 can now benefit from the recently FDA-approved small 

molecule inhibitors of these mutant proteins.28-31  While these new therapies are improving patient 

outcomes, many patients lack such targetable mutations.32-34  In addition, patients treated with 

these inhibitors are often still at risk for relapse.28-31  This highlights the need to further understand 

the molecular underpinnings of AML such that alternative, effective therapeutic options can be 

developed.   
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1.2 Heterogeneous nuclear ribonucleoprotein K (hnRNP K) 

The gene encoding hnRNP K (HNRNPK) resides on chromosome 9q21.32.  Deletions of 

chromosome 9q (del(9q)) are recurrent cytogenetic abnormalities observed in approximately 2% 

of patients with AML.35-37  Scattered mutations in this gene have also been identified in AML, 

albeit at an exceedingly low frequency (~1%).32-34  While these mutations have not been formally 

characterized, it has been suggested that they result in haploinsufficiency of hnRNP K.38 

Functionally, hnRNP K is a renaissance (wo)man of proteins.  It has been implicated in a 

wide variety of normal cellular functions, including signal transduction39-43, chromatin 

remodeling44-47, transcription48-54, RNA splicing55-59, mRNA stability60-62, and translation54, 63-69.  

Not surprisingly, homozygous Hnrnpk knockout is embryonic lethal in mice, supporting its role as 

an essential gene.53  This broad functionality of hnRNP K is largely due to its composite protein 

domains.  A nuclear localization signal (NLS) and a nuclear shuttling domain (KNS) allow hnRNP 

K to move bi-directionally between the cytoplasm and nucleus.70, 71  The K-interactive (KI) domain 

is largely responsible for the interaction between hnRNP K and other proteins.72, 73  In addition, 

three K homology (KH) domains are located throughout the protein, which recognize RNA and 

single-stranded DNA.74  KH1 and KH2 are located at the amino terminus, while KH3 resides at 

the carboxy terminus—separated by a large unstructured region, including the KI domain.72-74  

These domains are depicted in Figure 1.  

 

Figure 1: Schematic of hnRNP K: Each domain is indicated.  Diagram is not to scale.  NLS: 

nuclear localization signal; KH: K homology domain; KI: K interactive domain; KNS: K nuclear 

shuttling.   
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hnRNP K has been implicated in a variety of malignancies.  For example, our group 

developed a mouse model to demonstrate that HNRNPK is the haploinsufficient tumor 

suppressor at the recurrently deleted 9q locus in AML.53  In contrast to this observation, several 

clinical studies have observed that increased hnRNP K expression is correlated with advanced 

disease and poor clinical outcomes in several malignancies including breast, pancreatic, and 

colorectal cancers, among others.75-82  Indeed, we recently identified overexpression of hnRNP 

K associated with substantially inferior overall survival in a subset of patients with diffuse large 

B-cell lymphoma (DLBCL), regardless of subtype.83  Critically, when we generated a mouse 

model of B-cell specific hnRNP K overexpression, mice developed B-cell lymphoma—thus 

formally demonstrating that hnRNP K is an oncogene in B-cell malignancies when 

overexpressed.83  

 

1.3 RUNX1 

RUNX1 (also called AML1, CBFa2, or PEBP2aB) is a pivotal hematopoietic transcription 

factor.84  Homozygous Runx1 knockout is embryonic lethal in mice due to absence of definitive 

hematopoiesis and propensity to hemorrhage.85  Runx1 heterozygotes have diminished erythroid 

and myeloid progenitor cells.85  When Runx1 is conditionally deleted in adult mice, significant 

hematopoietic alterations are observed, including inefficient production of platelets and common 

lymphocyte progenitors.86  These mice also display a myeloproliferative phenotype.86   

RUNX1 is located on chromosome 21 in humans and chromosome 16 in mouse.  Two 

alternative promoters—distal (P1) and proximal (P2)—control expression of RUNX1 in 

vertebrates.87  Isoforms arising from P1 and P2 have different 5’ untranslated regions (UTRs) 

and coding sequences at the amino terminus, but are otherwise identical in their full-length 

forms.87  RUNX1C is the major isoform transcribed from P1.87  Utilization of P2 results in the 

formation of RUNX1B.87  In primates, alternative exon usage also results in RUNX1A, which 
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lacks the 203 N-terminal amino acids present in RUNX1B.87-90  In mice, a functional ortholog of 

RUNX1A is generated by use of an extended terminal exon, referred to as Runx1bEx6e.88  

All of these major RUNX1 isoforms share a conserved runt-homology domain (RHD), which 

is responsible for sequence-specific DNA recognition and binding, as well as heterodimerization 

with CBFb.91, 92  The longer isoforms (RUNX1B and RUNX1C) also share a transactivation 

domain (TAD) and inhibitory domain, where protein-protein interactions occur that can influence 

the transcriptional activity of RUNX1.93, 94 

While all RUNX1 isoforms have been identified throughout various temporal stages in 

hematopoiesis, RUNX1B predominates in the adult.95  RUNX1C is mostly present early in 

development, as definitive HSCs emerge95, but is re-expressed in adult B-cells, where it inhibits 

proliferation96.  In contrast to the embryonic lethality observed in complete Runx1 knockout mice, 

knockout of only the P1 locus (encoding this C isoform) does not result in an overt phenotype.86, 

97  Throughout this work, we refer to RUNX1B as simply “RUNX1” unless otherwise specified.   

Overexpression of human RUNX1A in mouse models leads to lymphoid leukemia98, 

expansion of hematopoietic stem and progenitor cell populations99, and enhanced engraftment 

into recipient mice.99, 100  In striking contrast, overexpression of the longer isoforms of RUNX1 

leads to altered hematopoietic differentiation, favoring monocytes over granulocytes101, 

decreased engraftment potential95, 99, and p53-dependent senescence102, 103. 

In leukemias of various lineages, RUNX1 is a common target of chromosomal translocations 

or mutations.  Indeed, RUNX1 was originally identified in the context of the t(8;21) translocation 

in AML (thus its alias, AML1).104  Other recurrent translocations affecting RUNX1 include t(3;21) 

in myelodysplastic syndrome (MDS) and therapy-related AML (t-AML)105, and t(12;21) in pediatric 

ALL106, though dozens more have been reported107.  Somatic point mutations in RUNX1 are also 

evident in AML, ALL, and MDS108, 109, and are associated with high-risk disease110-115.  

Furthermore, germline RUNX1 mutations are associated with familial platelet disorder with 

associated myeloid malignancy (FPDMM).116 
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1.4 RNA Splicing and its role in hematologic malignancies 

Though only approximately 20,000 protein-coding genes have been identified in the human 

genome117, 118, many more proteins have been observed in cells119, 120.  In fact, the vast majority 

of these genes are thought to give rise to multiple isoforms.121, 122  Such entities are occasionally 

referred to as “spliceoforms”, as it is now widely accepted that alternative splicing is the major 

mechanism behind this phenomenon.   

Early descriptions and imaginations of alternative splicing were documented in the 1970s 

based on the observed piece-like structure of bacterial genes.123, 124  (These references are worth 

reading, as they offer intriguing historic insight via fascinating speculations on a phenomenon 

that was, at the time, almost completely enigmatic.)  It is now appreciated that splicing is required 

for the maturation of the vast majority of mRNAs, and occurs in the nucleus where non-coding 

introns are excised from pre-mRNA to allow for a continuous stretch of protein-coding exons in 

a mature transcript prior to translation.121, 122  Use of alternative splice sites results in selective 

use of exons.125  This contributes to the immense proteomic diversity observed in cells.119, 120 

Large molecular complexes known as the major and minor spliceosome mediate the RNA 

splicing process.125-127  These are comprised of several small nuclear ribonucleoprotein 

complexes (snRNPs; consisting of small RNAs complexed with proteins): U1, U2, U4, U5, and 

U6 in the major spliceosome125, and  U5, U11, U12, U4, and U6 in the minor spliceosome126, 128.  

As transcription occurs, the U1 snRNP binds the 5’ splice site (5’ss; located between the 

upstream exon and intron).125, 126, 129  The 3’ss is soon bound by U2 auxiliary factors (U2AFs).126, 

129 Shortly thereafter, the U2 snRNP binds sequence motifs at the 3’ splice site (3’ss; flanking the 

intron and downstream exon).125, 126 Finally, U4/U5/U6 snRNPs are recruited, the fully assembled 

spliceosome assumes an active conformation, and two sequential transesterification reactions 

occur, resulting in intron excision and ligation of adjacent exons.125   

Promoters and repressors of splicing can further impact splicing outcomes.  Serine-arginine-

rich proteins (SR proteins) and heterogeneous nuclear ribonucleoproteins (hnRNPs) are 
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canonically classified as promoters and repressors, respectively.130-134  However, their impact on 

splicing can vary depending on a variety of factors, including the relative location within the pre-

mRNA in which they bind, cellular context, expression level or mutation of the splicing factor, 

etc.135-138  

Alterations in RNA splicing have been increasingly recognized in numerous solid and 

hematologic malignancies.  In particular, mutations in genes encoding splicing factors are 

common in MDS and AML.139-141  The most common of these mutated splicing factors are 

serine/arginine-rich splicing factor 2 (SRSF2), splicing factor 3B subunit 1 (SF3B1), U2 small 

nuclear auxiliary factor 1 (U2AF1), and zinc finger RNA-binding motif and serine/arginine-rich 2 

(ZRSR2), all of which contribute to recognition of the 3’ss.139-141  These mutations are invariably 

mutually exclusive with one another.  With the exception of ZRSR2, the observed mutations are 

heterozygous and affect specific amino acid residues.32-34  Mutations in ZRSR2 confer loss of 

function, whereas mutations in the remainder of these genes confer gain of function and/or 

altered functionality.142  Individual splicing factor mutations have been correlated with specific 

subtypes of myeloid malignancies143, indicating that differentially altered splicing can result in 

varied phenotypic consequences.  For example, Srsf2P95H mice develop features consistent with 

MDS, such as leukopenia, morphologic dysplasia, and increased numbers of myeloid progenitor 

cells.144  While U2af1S34F mice do not develop the same dysplasia, though leukopenia and 

increased myeloid progenitor cells are evident.145 

Even in the absence of these splicing mutations, aberrant splicing in myeloid malignancies 

has been described.146  This is likely due in part to the fact that dysregulated splicing can give 

rise to oncogenic protein isoforms.147, 148  Understanding the factors involved in aberrant splicing 

as well as the consequences of aberrant protein isoform expression are thus important in more 

deeply understanding disease.   
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1.5 hnRNP K and splicing 

hnRNP K has been shown to influence the splicing of several genes.56, 58, 59, 149-151  This is in 

part due to its interactions with splicing factors, such as SRSF7 (also called 9G8) and SRSF3 

(also called SRp20).46  In hepatocellular carcinoma, hnRNP K has been shown to alter splicing 

of G6PD in opposite directions depending on its interacting protein partners.152  

As a poly(C) binding protein, hnRNP K can bind polypyrimidine tracts in the proximity of both 

3’ and 5’ splice sites.56, 74, 153  In the case of chicken b-tropomyosin pre-mRNA, hnRNP K 

promotes splicing of an alternative exon 6A.55  Likewise, inclusion of MRPL33 exon 3 is 

dependent on elevated levels of hnRNP K.150  Contrastingly, hnRNP K acts as a splicing inhibitor 

in the case of Bcl-Xs, preventing production of this pro-apoptotic entity.58  Thus, even in the case 

of direct RNA-binding, hnRNP K can have variable effects on pre-mRNA splicing.154 

Indirectly, hnRNP K can alter splicing by regulating expression of splicing factors.  This is 

exemplified in gastric cancers, where hnRNP K transcriptionally upregulates of SRSF1, which in 

turn alters splicing of CD44.151   

Together, these observations demonstrate that hnRNP K can directly and indirectly influence 

splicing in a context-dependent manner.   

   

1.6 Regulation of RUNX1 by splicing 

Like the majority of protein-coding genes with more than one exon, RUNX1 pre-mRNA 

undergoes splicing.  As discussed in section 1.3, the isoforms RUNX1A and RUNX1B arise due 

to alternative splicing.  However, the mechanisms underlying the specifics of this splicing have 

not been fully elucidated.  Another isoform of RUNX1 lacks an internal 64 amino acid residues 

(corresponding to exon 6), and has been identified in mouse and human.88, 93, 149, 155  In ovarian 

cancer, this isoform (herein called RUNX1DEx6) has been correlated with inferior outcomes.155 

Poly(C) binding proteins, including PCBP2 and hnRNP K have been shown to play a role in this 
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splicing event.56, 149  However, the existence, regulation, and function of RUNX1DEx6 has not 

been characterized in AML.  

 

1.7 Conclusion 

Acute myeloid leukemia is a heterogeneous group of hematologic malignancies.  With few 

exceptions, outcomes for patients with this disease are suboptimal.  We have outlined several 

features of AML that can be used as prognostic and therapeutic guides.  Despite newly approved 

therapeutic agents, many patients remain ineligible for these drugs—mandating further drug 

development via a deeper understanding of leukemogenic mechanisms.   To this end, we 

discussed a role of the highly multifunctional protein hnRNP K in AML and reviewed the biology 

of the critical transcription factor, RUNX1, in this disease.  Furthermore, we discussed pre-mRNA 

splicing biology and the aberrant splicing observed in AML and other myeloid malignancies.  We 

presented the role of hnRNP K in splicing, and finally, discussed alternative splicing of RUNX1.   

    

1.8 Hypothesis and research goals 

This dissertation begins with an investigation into the expression and clinical impact of 

hnRNP K in AML.  While haploinsufficiency of HNRNPK has been described, along with scarce 

mutations in this gene, no studies have systematically evaluated hnRNP K expression in cases 

of AML.  In Chapter 3, we formally test the hypothesis that hnRNP K is an uncharacterized 

oncogene in AML by developing and characterizing a mouse model of hnRNP K-overexpression.  

In Chapter 4, we begin to evaluate a mechanism of the oncogenic functions of hnRNP K by 

utilizing unbiased screening methods.  In the fifth and final experimental chapter, we characterize 

the interaction between hnRNP K and RUNX1 RNA in vitro and in vivo.   

Our working hypothesis is that hnRNP K, when overexpressed, is an uncharacterized 

oncogene in AML that functions in part through its post-transcriptional interactions with RUNX1.   
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To this end, I endeavored to: 

1. Evaluate the hnRNP K expression in AML and characterize its clinical impact 

2. Describe the hematologic consequences of hnRNP K overexpression in vivo 

3. Elucidate the molecular basis of the oncogenic function of hnRNP K 

4. Examine the functional consequences of the hnRNP K-RUNX1 interaction 

 

1.9 Significance 

This work will provide great insight into the role of hnRNP K overexpression in myeloid biology 

and leukemogenesis.  By understanding the interaction between RUNX1 and hnRNP K, future 

studies will be able to explore therapeutic opportunities to alter this interaction and thereby 

dramatically improve outcomes for patients with hnRNP K-overexpressing AML.  
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Chapter 2 

hnRNP K is overexpressed in acute myeloid leukemia and is associated with inferior 

outcomes 
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2.1 Introduction 

Acute myeloid leukemia (AML) encompasses a constellation of diseases characterized 

by recurrent genetic and/or cytogenetic abnormalities.  Outcomes for patients with AML have 

historically been quite dismal.  For example, in the 1970s, 5-year overall survival (OS) for patients 

diagnosed with AML and treated at MD Anderson Cancer Center was a mere 13%.12  With 

improvements in chemotherapeutic regimen composition and dosing, as well as  supportive care, 

this number improved to 49% in 2015.12  To further improve upon these outcomes, the 

hematology community has expended incredible efforts to understand the driving events 

underlying AML development such that better therapeutic options can be created, thereby 

prolonging the quantity and quality of patient life.  Indeed, many of the mutated proteins identified 

in AML (FLT3, IDH1, IDH2, JAK2) can now be targeted with small molecular inhibitors that have 

either been FDA-approved or are in late phases of clinical trials.33 

 In 2013, The Cancer Genome Atlas published a landmark study delineating the most 

commonly mutated genes in de novo AML.32  This list of genes has been validated and expanded 

upon by others.33, 34  Among these genes is HNRNPK, which encodes for the RNA-binding protein 

heterogeneous nuclear ribonucleoprotein K (hnRNP K).32, 33  HNRNPK mutations were described 

to occur in approximately 1% of AML patients in these studies.32-34  In addition to the small 

proportion of patients with HNRNPK mutations, the mutations that were described did not cluster 

in a single hotspot of the gene, nor did they aggregate in a portion of the gene encoding for a 

single functional domain.  This motivated us to evaluate our own patient population at MD 

Anderson Cancer Center, where targeted exonic HNRNPK sequencing has been a routine 

clinical test since 2016.156   

 HNRNPK resides on chromosome 9q21.32, which is specifically deleted in ~2% of 

patients with AML, and leads to haploinsufficiency.35-37  Our group previously demonstrated that 

decreased expression of HNRNPK causes myeloid malignancy in a mouse model, thus 

confirming its role as a haploinsufficient tumor suppressor.53  This finding highlights that gene 
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dosage, perhaps independent of mutation status, may also contribute to AML development.  

Therefore, we evaluated HNRNPK expression levels in AML patients.   

To assess whether HNRNPK aberrations beyond genomic aberrations may be evident in 

these patient populations, we evaluated RNA and protein expression and correlated these results 

with patient outcomes.  Taken together, our data demonstrate that hnRNP K is highly expressed 

in a subset of patients with AML and these patients have inferior clinical outcomes compared to 

patients with lower levels of hnRNP K.   
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2.2 Materials and Methods 

HNRNPK Sequencing: Genomic DNA was extracted from bone marrow specimens with an 

Autopure extractor (Qiagen, Valencia, CA, USA).  Libraries were prepared from genomic DNA 

using hybridization capture-based enrichment of regions of interest.  For HNRNPK, this included 

exons 3-7 (amino acids 1-95) and 7-17 (amino acids 100-465). A next generation sequencing 

platform was used to perform bidirectional paired-end sequencing to detect single nucleotide 

variants (SNVs) and insertions or deletions up to 52 base pairs (Illumina Inc., San Diego, CA, 

USA).  GRCh37/hg19 was the genomic reference sequence used. Total sequencing coverage 

depth was at least 250 reads.  The lower limit of detection was 5% for clinical reporting.156  

 

Fluorescence in situ hybridization (FISH) and Giemsa staining:  Bone marrow cells harvested 

from patients were treated with 0.1µg/mL colcemid for 30 minutes and resuspended in a 

hypotonic solution for 30 minutes, after which Carnoy’s fixative solution (3:1 methanol:glacial 

acetic acid) was added.  Cells were then placed onto slides, and kept at 60°C overnight.  The 

next day, slides were placed in 0.05% trypsin-EDTA for 1 minute and 45 seconds, then 

sequentially washed in isoton diluent and Gurr’s buffer (pH 6.8), Giemsa stained for 45 seconds, 

and rinsed in water.  G-banding was evaluated via microscopy.  For FISH hybridization, slides 

were aged and dehydrated in an ethanol gradient before denaturation took place at 73°C for 5 

minutes followed by hybridization for 24 hours at 37°C.  The RP11-19G1 probe was developed 

to recognize chromosome 9p (control) and the HNRNPK probe (RP11-101L4) to the 9q21.32 

locus.  DAPI was used as a counterstain.   

 

qRT-PCR: Bone marrow or peripheral blood samples were subjected to adequate red blood cell 

lysis with BD Pharm Lyse lysing solution (BD Biosciences, San Jose, CA, USA) and RNA 

extracted and purified using phenol/chloroform.157  Samples were treated with DNAse for 30 
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minutes at 37°C, and quantified using a NanoDrop spectrophotometer (ThermoFisher Scientific, 

Waltham, MA, USA).  1µg of RNA was reverse transcribed using iScript (BioRad, Hercules, CA, 

USA).  qRT-PCR was performed using iTaq Universal SYBR Green Supermix as per 

manufacturer’s instructions (BioRad, Hercules, CA, USA) using an ABI StepOnePlus Real Time 

PCR System.  Expression of HNRNPK was evaluated using primers as follows: Forward: 5’ 

GCAGGAGGAATTATTGGGGTC 3’, Reverse: 5’ TGCACTCTACAACCCTATCGG 3’. Changes 

in expression were determined by comparing HNRNPK expression to the housekeeping control 

RPLP0. Primers for RPLP0 Forward: 5’ CCTTCTCCTTTGGGCTGGTCATCCA 3’ and reverse: 

5’ CAGACACTGGCAACATTGCGGACAC 3’. Individual samples were assayed in triplicate.  

Calculations were performed using the Pfaffl method comparing expression changes between 

target genes and housekeeping control.158 

 

Immunohistochemistry: Formalin-fixed paraffin-embedded bone marrow biopsies were 

deparaffinized in xylene and rehydrated in an alcohol gradient.  Antigen retrieval was performed 

using 10mM sodium citrate and 0.05% Tween 20 (pH 6.0) in a steam chamber for 45 minutes.  

Slides were incubated in 3% hydrogen peroxide/methanol solution to deactivate endogenous 

peroxidases and subsequently incubated with anti-hnRNP K antibody (Abcam, Cambridge, MA, 

USA, ab18195, 3C2, 1:3000 dilution) at 4°C overnight in a humidity chamber.  Slides were 

washed with 0.1% Tween-PBS before biotinylated secondary antibody was added at room 

temperature for 30 minutes.  Antibody-protein interactions were visualized with Vectastain Elite 

ABC and DAB peroxidase substrate kits (Vector Laboratories, Burlingame, CA, USA).  Nuclear 

fast red was used as a counterstain.     

 

Reverse phase protein array: Methodology is fully described elsewhere.159-161  Briefly, bone 

marrow protein samples were printed in replicate in serial dilutions onto slides along with controls 

for normalization and expression.  A panel of 230 strictly validated primary antibodies was used 
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to probe the slides, and a stable dye is precipitated after addition of a secondary antibody.  A 

complete description of the antibodies is included elsewhere.161  The primary antibody against 

hnRNP K was from Santa Cruz Biotechnology (Dallas, TX, USA, sc-28380, D6).  Stained slides 

were analyzed with Microvigene software (Version 3.4, Vigene Tech, Carlisle, MA, USA).  Data 

is publicly available at www.leukemiaatlas.org.162  Acute promyelocytic (FAB M3) cases were 

excluded.   

 

Data normalization and processing: SuperCurve algorithms163 was used to generate a single 

expression value for each sample from the series of dilutions.  The average expression level of 

each replicate sample was used for downstream analysis.  Topographical normalization 

procedures164 and loading controls165 were included.  Protein expression levels were described 

as relative to the median of CD34+ bone marrow specimens from healthy donors.   

 

Statistical analyses: Overexpression of hnRNP K protein was defined as any expression greater 

than or equal to one standard deviation above the median expression for normal, healthy CD34+ 

bone marrow.  Correlations between these expression levels and clinical features were assessed 

using Wilcoxon rank-sum test.  Survival curves were generated using the Kaplan-Meier method.   
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2.3 Results 

HNRNPK mutations are rare in AML  

Since implementation of the 81-gene targeted-sequencing panel that tests for mutations 

in leukemia-associated genes, samples from 238 unique AML patients have been sequenced at 

MD Anderson.  Of these patients, HNRNPK mutations were identified in seven individuals (2.9% 

of cases).  A schematic of these mutations and their location within the coding sequence are 

depicted in Figure 2.  These mutations were not clustered in a single region of the gene, and 

were distributed throughout regions encoding for several functional domains of the hnRNP K 

protein.   

 

Figure 2. HNRNPK mutations in AML at MD Anderson.  Schematic of hnRNP K with each 

domain indicated.  Numbers above the domains correspond to the amino acid residue that limit 

each domain.  Mutations identified in AML patients at MD Anderson are depicted on the domain 

diagram.  Each mutation was identified once within our patient cohort.  Diagram is not to scale. 

 

Splicing factor mutations are overrepresented in cases with mutant HNRNPK 

Table 1 includes the cytogenetics and co-occurring mutations for each case with an 

identified HNRNPK mutation.  Due to the very small sample size, it is challenging to draw 

definitive conclusions about enrichment of co-occurring mutations or cytogenetic abnormalities.  

However, 5/7 (71.4%) patients with an HNRNPK mutation also had a co-occurring mutation in a 

splicing factor gene, such as U2AF1, SRSF2, or SF3B1.  This is more than would be expected, 

since the incidence of such mutations in AML ranges from 4-6% for U2AF1, 1-12% for SRSF2, 

and 1-4% for SF3B1, and these mutations are virtually always mutually exclusive of one 

another.32-34   
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Table 1. Co-occurring mutations and cytogenetic features of AML cases with mutant 

HNRNPK. Table lists the mutations observed in HNRNPK, the resultant amino acid change in 

hnRNP K, co-occurring mutations detected at diagnosis, and cytogenetic features.  Mutations in 

genes encoding splicing factors are indicated in red. 

 

HNRNPK RNA is elevated in a subset of AML patients 

In the context of our previous work demonstrating that low expression of hnRNP K could 

result in myeloid malignancy, we next sought to evaluate whether expression of hnRNP K was 

altered in patients with AML without 9q21.32 deletions.  We evaluated expression of HNRNPK 

RNA by qRT-PCR on bone marrow samples from patients with AML compared to CD34+ cells 

HNRNPK 
mutation

Amino acid 
change Other mutations Cytogenetics

26C>T T9I
IDH2 R140Q 

NPM1 W288fs 
SRSF2 P95H

46,XY

166G>A A56T

KRAS G12C 
NRAS Q61K 

RUNX1 R166Q 
SF3B1 K666E

46,XX,t(3;12)(q26.2;p13),del(7)(q22q36)[18]/46,idem[cp2]

457del Q153fs
FLT3 D835H 
TP53 R248G 

RUNX1 D332fs
47,XY,+8[12]/48,idem,+9[8]

590G>C G197A

KRAS G12V 
NRAS G12D 
U2AF1 S34F 
WT1 H465L

46,XY

856C>T R286C
DDX41 R525H 
DDX41 R159*
SRSF2 P95H 

46,XY,del(2)(p16)[1]/46,XY,t(8;19)(p21;q13.3)[1]/46,XY[18]

914G>T R305L
TP53 A119G 

FBXW7 R505C 
GATA2 S24*

43~45,Y,-X,der1(t1;5)(q21;q13),-2,-3,del(4)(q22),
der(5)del(5)(p14)t(1;5),t(6;7)(p23;q11.2),del(7)(p15),-9,-16,

add(21)(q22),+2~5mar[cp20]

998dupA Y333*

DNMT3A R887fs 
NPM1 W288fs 

NRAS G12A 
SF3B1 K666N

46,XY
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from healthy donor bone marrow (Figure 3A).  While the difference in median HNRNPK 

expression between AML patients and healthy donors was not statistically significant (p=0.16), a 

subset of patients (5/18; 27.8%) had demonstrably higher HNRNPK expression than healthy 

controls.  When analyzed separately, this difference was statistically significant (p=0.02, Figure 

3B).  To confirm these data, we performed qRT-PCR on a separate cohort of AML bone marrow 

samples from patients with cytogenetically normal disease from a different institution (Centro 

Nacional de Investigaciones Oncológicas [CNIO]; Madrid, Spain; Figure 3C).  Again, a subset of 

patients (3/15; 20%) had clearly elevated HNRNPK expression even though the difference in 

median HNRNPK expression between groups did not differ.   

 

Figure 3. HNRNPK RNA is overexpressed in a subset of AML.  qRT-PCR for HNRNPK 

expression in patients with AML from MD Anderson Cancer Center (A-B) or CNIO (C).  Each 

point represents an individual patient sample.  Lines are drawn at the median with tails extending 

to the interquartile range.  Each dot indicates an individual patient sample. 

 

hnRNP K protein is elevated in a subset of AML 

To evaluate whether this increase in RNA expression corresponded to an increase in 

hnRNP K protein expression, we analyzed a reverse phase protein array (RPPA) from a different 

cohort of patients previously treated at our institution. This compared hnRNP K expression in 

bone marrow from patients with protein expression in CD34+ bone marrow cells from healthy 
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donors.  Strikingly, median hnRNP K expression was significantly higher in AML samples 

compared with healthy donors (p=0.0056, Figure 4A).  We confirmed this altered protein 

expression using hnRNP K immunohistochemistry (IHC) from samples used in the RPPA (Figure 

4B).  Indeed, cases that were deemed to have high hnRNP K expression by RPPA stained 

strongly for hnRNP K by IHC.  Likewise, samples with low expression of hnRNP K by RPPA had 

only weak hnRNP K staining by IHC.   

 

Figure 4. hnRNP K protein is overexpressed in a subset of AML.  A.  Normalized hnRNP K 

protein expression data from RPPA.  Line is drawn at median expression with bars reaching 

within one interquartile region.  Each dot represents a sample from an individual patient.  B.  

hnRNP K IHC on representative samples from the RPPA dataset represented in panel A.  

 

Elevated hnRNP K expression is associated with inferior clinical outcomes in AML 

To determine whether increased hnRNP K expression was associated with altered clinical 

outcomes, we performed Kaplan-Meier analysis on patients stratified according to hnRNP K 

expression by RPPA.  For these analyses, patients with hnRNP K expression greater than or 

equal to one standard deviation above the median of healthy control bone marrow were 

considered to have high hnRNP K expression.  With this cutoff, 45 patients (22%) overexpressed 

hnRNP K, and 160 had normal or low hnRNP K expression.  Patients with elevated hnRNP K 
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had statistically significant decreases in both remission duration (HR 2.1; 95% CI 1.2-3.6; Figure 

5A) and overall survival (24.3 months versus 48.7 months; HR 1.9; 95% CI 1.3-2.7; Figure 5B). 

 

Figure 5. hnRNP K overexpression is associated with inferior outcomes.  Kaplan-Meier 

analysis of remission duration (A) or overall survival (B) in patients with AML stratified according 

to hnRNP K protein expression.  Red lines indicate patients with hnRNP K overexpression 

(greater than one standard deviation above the median of healthy controls).  Blue lines indicate 

the remainder of the group with normal/low hnRNP K expression.   

 

Elevated hnRNP K expression is enriched in immature AML subtypes 

To evaluate whether hnRNP K overexpression was enriched in AML of particular 

morphology, we evaluated hnRNP K protein expression in cases according to French-American-

British (FAB) classification.  Median hnRNP K expression was higher in M0 and M1 cases 

compared with M2, M4, or M5 (Figure 6).   
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Figure 6. hnRNP K is elevated in more immature AML.  Normalized hnRNP K protein 

expression data as assessed by RPPA and categorized according to FAB subtype.  Lines are 

drawn at the median with tails reaching the interquartile range. 

 

Elevated hnRNP K expression is correlated with mutations in NPM1 and FLT3 

To evaluate the specific context in which hnRNP K is highly expressed in AML, we sought 

to determine whether high hnRNP K expression co-occurred with common mutations.  Mutations 

in FLT3 in the absence of a concomitant NPM1 mutation did not exhibit an appreciable difference 

in hnRNP K expression (Figure 7).  Interestingly, an NPM1 mutation in the absence of FLT3 

mutation did have a statistically significant increase in hnRNP K expression.  In line with this 

observation, cases with both NPM1 and FLT3 mutations also had a statistically significant 

increase in hnRNP K expression (Figure 7).  Mutations in TP53, NRAS, KRAS, RUNX1, and 

IDH1/2 did not correlate with changes in hnRNP K expression (data not shown).     
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Figure 7. hnRNP K overexpression is enriched in NPM1 mutant cases.  Normalized hnRNP 

K expression stratified according to mutational status of NPM1 and FLT3.  Lines are drawn at 

the median and tails reach to within one interquartile range. 

 

High hnRNP K expression in the context of NPM1 mutations is associated with inferior outcomes 

To assess the impact of hnRNP K expression in the context of these mutations, we 

performed Kaplan-Meier analysis on patients based on hnRNP K status.  Patients with any 

mutation in NPM1 who also had greater than median hnRNP K expression had a statistically 

significant decrease in overall survival (p=0.022, Figure 8A).  Since NPM1 mutations in the 

context of wildtype FLT3 have a relatively fair prognosis27, we also specifically evaluated this 

subset of patients.  Patients harboring NPM1MutFLT3WT and higher than median hnRNP K 

expression had inferior overall survival, though this was not statistically significant, likely due to 

limited sample size (Figure 8B).  Given these findings, evaluating hnRNP K expression in this 

specific subset of patients may offer prognostic guidance for this otherwise favorable subgroup.   
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Figure 8. hnRNP K overexpression in the context of NPM1 mutations is associated with 

decreased overall survival.  Kaplan-Meier analyses of overall survival of AML patients with 

mutant NPM1 (A) or mutant NPM1 and wildtype FLT3 (B) stratified according to hnRNP K 

expression status.  High expressors are shown in red.   

 

The HNRNPK locus is amplified in a subset of AML and corresponds with increased hnRNP K 

protein.   

To understand a possible mechanism of this hnRNP K overexpression, we designed a 

fluorescence in situ hybridization (FISH) probe that hybridizes to the HNRNPK locus.  As 

expected, when we analyzed AML cases harboring chromosome 9q deletions, we only observed 

one copy of HNRNPK that was detectable by FISH (Figure 9A).  Strikingly, we found numerous 

AML cases not harboring del(9q) had an extra copy of the HNRNPK locus (Figure 9A).  Critically, 

when we performed IHC on samples with extra copies of the HNRNPK locus, the protein product, 

hnRNP K, was highly abundant (Figure 9B).  Therefore, one mechanism of hnRNP K 

overexpression may be additional copies of the HNRNPK locus.   

++ + +

+ ++

p = 0.022

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (years)

Cu
m

ula
tiv

e 
ov

er
all

 su
rv

iva
l p

ro
ba

bil
ity

hnRNPK

+
+

Low

High

A

+ + +

+ +

p = 0.12

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (years)

Cu
m

ula
tiv

e 
ov

er
all

 su
rv

iva
l p

ro
ba

bil
ity

hnRNPK

+
+

Low

High

B



www.manaraa.com

  26 

 

Figure 9. HNRNPK locus is duplicated in a subset of AML.  A. (Left) Metaphase FISH using 

HNRNPK specific probe (red) and a control 9p probe (green).  Other images represent nuclei of 

interphase cells from a healthy human donor, AML with del(9q), or diploid AML.  Cells were 

probed with HNRNPK (red) or control 9p probe (green) and counterstained with DAPI (blue).  B.  

hnRNP K IHC on healthy human bone marrow (left) or AML bone marrow with three copies of 

HNRNPK as identified by FISH.   

 

Additional HNRNPK loci are present as small supernumerary marker chromosomes  

Given the presence of additional copies of HNRNPK in several AML cases, and the 

propensity of translocations to occur in hematologic malignancies, we wanted to examine 

whether HNRNPK may partake in a translocation event.  When we performed FISH on AML 

samples alongside Giemsa staining, we were unable to locate a consistent chromosome with 

which HNRNPK was associated.  Instead, HNRNPK appeared in locations that did not stain with 

Giemsa, but only with DAPI—meeting the criteria of a small supernumerary marker chromosome 
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(sSMC; Figure 10).166  This indicates that HNRNPK duplications do not occur in the context of 

translocations, but are present as sSMCs.   

 

Figure 10. Additional HNRNPK loci exist as small supernumerary marker chromosomes.  

AML patient bone marrow metaphase subjected to (A) FISH with HNRNPK shown in red and a 

control 9p probe in green or (B) Giemsa staining. Red circles are drawn around chromosome 9. 

Blue arrow indicates presence of an additional HNRNPK locus. C.  Magnified view of the 

additional HNRNPK locus (left) and the two chromosomes 9 (right).   
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2.4 Discussion 

 These studies elucidate that hnRNP K is overexpressed in a subset of patients with AML 

at both the RNA and protein level.  Importantly, the overexpressed hnRNP K is unlikely to be 

mutated, since mutations in HNRNPK are rare events—occurring in less than 3% of patients, 

and the overexpression occurs in a much larger subset of patients (~20%) (Figures 3, 4).  This 

corroborates previous reports of HNRNPK mutations, where incidences mingled near a mere 

1%.32-34   

 The HNRNPK mutations we found in AML patients at MD Anderson were largely unique.  

A single AML patient has been described as having an A56G mutation, similar to the A56T 

mutation we identified.34  Of interest, the Y333* mutation has been described in a patient with 

AML33, but has also been observed in a patient with Au-Kline syndrome—a multiple malformation 

syndrome resulting from germline mutations or deletions of HNRNPK.38, 167  Perhaps then, it is 

not surprising that this mutation has been suggested to undergo nonsense-mediated decay, and 

therefore mimic HNRNPK haploinsufficiency.38  However, the functional consequences of this 

mutation and the others we identified have not been formally characterized.  Despite the rarity of 

these mutations, future work evaluating their functional consequences may be an impactful 

means to more thoroughly understand the biologic role of hnRNP K in multiple tissue types.   

 Despite having a very small cohort, we noticed that HNRNPK mutations in AML appeared 

to coexist with splicing factor mutations (SRSF2, U2AF1, or SF3B1).  This is an intriguing 

observation since mutations in these genes are only estimated to occur in approximately 15% of 

AML.32-34, 168  As hnRNP K has itself been implicated in splicing56, 149, 154, 169 (see Chapters 4-5), 

future studies investigating these relationships would be of particular interest.    

 Data presented in this chapter indicate that HNRNPK transcript is elevated in a subset of 

AML patients (Figure 3).  This observation was mirrored in a cohort of patients from CNIO in 

Spain (Figure 3C).  While both patient cohorts for qRT-PCR analyses were relatively small, 

similar observations between these samples from completely separate institutions bolsters the 
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conclusion that HNRNPK is overexpressed in ~20% of AML.  These findings were greatly 

substantiated by the observation that hnRNP K protein was also elevated in AML samples 

compared to healthy controls (Figure 4).  While some may therefore conclude that the majority 

of AML cases “overexpress” hnRNP K (as one interpretation of the term “overexpression” is 

anything above “normal expression”170), we chose to be more cautious in our definition of this 

admittedly subjective term.  As the median of hnRNP K expression in AML was already greater 

than that of healthy controls, we chose to increase our threshold to one standard deviation above 

this measure.  With this cutoff, we identified cases with substantially increased hnRNP K, a 

finding that was further validated by hnRNP K IHC (Figure 4B).  Therefore, we used this as the 

definition of hnRNP K overexpression.   

When AML cases were stratified according to hnRNP K overexpression, we observed 

statistically significant decreases in remission duration and overall survival (Figure 5).  It is 

relevant to note that the RPPA data, and therefore these cutoffs, were generated from a cohort 

of patients treated prior to 2015.162  Almost all of these patients were treated with similar 

chemotherapy-based regimens, devoid of hypomethylating agents, targeted small molecules, 

immunotherapies (including antibodies), or cellular therapies.  It is thus possible that differences 

in these clinical outcomes associated with hnRNP K expression are more reflective of the 

underlying disease biology, not merely an artifact of response to more sophisticated therapeutic 

agents.  On the other hand, with the widespread use of these agents, hnRNP K overexpression 

as a single stratification criterion may no longer be sufficient to separate outcomes.  Prospective 

studies would be relevant to further understand the impact of hnRNP K overexpression on patient 

outcomes in the context of the most up to date therapeutic options.   

We found that AML cases with more immature phenotypes by FAB subclass (M0 or M1) 

had increased hnRNP K expression compared to more mature cases (Figure 6).  This is only 

partly consistent with microarray data in healthy human hematopoiesis, where HNRNPK 

expression is relatively high in hematopoietic stem cell subsets and decreases slightly in cells 
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that are fully committed to monocytic or megakaryocytic differentiation.171  In our data, cases of 

M5 (monocytic) and M7 (megakaryocytic) AML had lower hnRNP K levels than more 

undifferentiated cases (M0 and M1).  Unlike the observations in healthy hematopoiesis, where 

HNRNPK expression did not substantially decrease early in differentiation171, we observed that 

M2 and M4(eos) cases had a relatively steep drop off in hnRNP K expression.   

To more specifically identify subpopulations of patients with elevated hnRNP K 

expression, we evaluated hnRNP K expression in cases with mutated NPM1 and/or FLT3.  

hnRNP K expression did appear to be increased in the setting of NPM1 and FLT3 mutations 

(Figure 7).  Patients harboring mutated NPM1 with concomitant hnRNP K overexpression had 

decreased overall survival compared to those with lower hnRNP K expression.  This is 

particularly important in the subgroup of patients with mutated NPM1 in the context of wildtype 

FLT3, as such patients are normally considered to have a favorable prognosis.27  Strikingly, these 

patients had dramatically worse overall survival when hnRNP K was overexpressed.  Future 

studies evaluating the interaction between mutant NPM1 and hnRNP K overexpression are 

certainly warranted.   

The mechanism of the hnRNP K overexpression described in this chapter remains 

unclear; however, we did identify the presence of the HNRNPK locus as a small supernumerary 

marker chromosome (sSMC) that corresponded to high hnRNP K protein expression by IHC.   

When so-called marker chromosomes occur in AML, these can predict adverse prognosis172; 

however, these are identified in routine cytogenetic testing.  The sSMCs we identified are only 

detected by FISH, and would be missed in routine cytogenetic testing.  Therefore, the FISH probe 

we developed could have clinical potential as it would identify these sSMCs and also readily 

identify patients with AML harboring del(9q) encompassing this locus.  Prospective studies with 

this probe may be of clinical utility.  In addition, future investigations into the genomic contents of 

these sSMCs would be of great interest, as it may provide insight into the endogenous regulation 

of HNRNPK expression in disease states.     
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Small clinical studies have correlated high hnRNP K expression with inferior clinical 

course in several solid tumor types, including melanoma, breast, nasopharyngeal, pancreatic, 

hepatocellular, colorectal, bladder, and prostate cancers.75-82  Importantly, we have recently 

identified that overexpression of hnRNP K can have oncogenic activity in the setting of B-cell 

lymphoma.83 Thus, it is reasonable to hypothesize that high expression of hnRNP K may be 

pathogenic in the setting of myeloid malignancy.  Chapter 3 will address this hypothesis in detail.   
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Chapter 3 

hnRNP K overexpression drives myeloproliferative disease in murine models 
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3.1 Introduction 

In Chapter 2, we determined that hnRNP K was overexpressed in a subset of patients 

with AML, and this overexpression was associated with inferior clinical outcomes.  These 

observations alluded to the notion that hnRNP K may act as an oncogene when overexpressed 

in AML.  While limited clinical studies in solid tumors have seen hnRNP K overexpression75-82, 

data regarding a role for hnRNP K in hematologic malignancies is sparse.   

AML has been described as a disease arising from aberrations in hematopoietic stem 

and progenitor cells.173-175  Thus, an in vivo model used to evaluate an oncogenic role for hnRNP 

K should harbor hnRNP K overexpression in these immature cells.  We approached generating 

a mouse model of such using retroviral transduction of Hnrnpk into murine hematopoietic stem 

and progenitor cells followed by transplantation into recipient mice.   

Throughout a portion of mammalian development in utero, the fetal liver is the primary 

site of hematopoiesis.  In mice, beginning at embryonic day 11.5 (E11.5), hematopoietic stem 

cells (HSCs) begin to seed the fetal liver, and by E12.5, the fetal liver becomes the predominant 

site of HSC expansion.176, 177  Here, HSC number increases between E13.5-16.5, then declines 

steadily until HSCs shift to bone marrow at E17.5.178  Throughout this time, progenitor cells are 

also abundant in the fetal liver.179  Murine fetal liver cells (FLCs) from E13.5-16.5 therefore serve 

as a rich source of hematopoietic stem and progenitor cells.  Furthermore, FLCs can be virally 

transduced to stably alter gene expression.180, 181  Transplantation of these genetically altered 

FLCs into recipient mice is a rapid and efficient way to restrict expression of the gene of interest 

to the hematopoietic system.180, 181    
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3.2 Materials and Methods 

Plasmids: Retroviruses were made in an MSCV backbone and were modified from those 

described previously.180  MSCV-AML1/ETO-IRES-GFP plasmid was obtained from Addgene 

(plasmid #60832).180  The green fluorescent protein (GFP) coding sequence was replaced with 

firefly luciferase ORF obtained from a luciferase-pcDNA plasmid (Addgene plasmid #18964).182  

For generation of empty vectors, AML1/ETO was excised using EcoRI and BamH1 and plasmid 

re-ligated.  To generate MSCV-HNRNPK-IRES-GFP and MSCV-HNRNPK-IRES-Luciferase, 

AML1/ETO was replaced with HNRNPK that was PCR amplified from 293T cells.   

 

Retroviral production: HEK293T cells at 50% confluency in T75 flasks were transfected with 4 µg 

of transfer vector (MSCV-(HNRNPK)-IRES-GFP/Luciferase) and 4 µg of pCL-Eco packaging 

vector (Addgene plasmid #12371)183 with 12 µL of JetPrime DNA transfection reagent (Polyplus 

Transfection, New York, NY, USA).  Fresh stem cell medium without cytokines (see below) was 

supplied after 4-8 hours and cells were incubated at 32°C for 48-72 hours.  High-titer retroviral 

supernatant was collected and passed through a 0.45 µm filter.   

 

Fetal liver cell (FLC) isolation: The University of Texas MD Anderson Cancer Center Animal Care 

and Use Committee approved all mouse experiments performed in these studies under protocols 

0000787-RN01 and 0000787-RN02. Pregnant wildtype CD45.2+ C57/Bl6 females were 

euthanized by exposure to CO2 at day 13.5-16.5 of gestation.  Fetal livers were sterilely dissected 

and gently disrupted on a 70 µm filter to obtain a single-cell suspension.  The collected cells were 

briefly subjected to a red blood cell (RBC) lysis with BD Pharm Lyse buffer (BD Biosciences, San 

Jose, CA, USA).  After RBC lysis, cells were resuspended in stem cell medium at ~3x106 cells/mL 

and incubated at 37°C overnight prior to retroviral transduction. Stem cell medium contained 37% 

DMEM (Corning, Corning, NY, USA), 37% Iscove’s modified Dulbecco’s Medium (Corning, 

Corning, NY, USA), 20% fetal bovine serum, 2% L-glutamine (200mM; Corning, Corning, NY, 
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USA), 100 U/mL penicillin/streptomycin (Sigma Aldrich, St. Louis, MO, USA), 5x10-5 M 2-

mercaptoethanol (Sigma Aldrich, St. Louis, MO, USA), recombinant murine interleukin-3 (IL-3; 

0.2 ng/mL), interleukin-6 (IL-6; 2 ng/mL), and stem cell factor (SCF; 20 ng/mL; all cytokines from 

Stem Cell Technologies, Vancouver, Canada).   

 

FLC transduction and sorting: Approximately 5x106 FLCs were resuspended in 2 mL of high-titer 

retroviral supernatant supplemented with 12 µg/mL polybrene and cytokines (IL-3; 0.2 ng/mL, IL-

6 2 ng/mL, and SCF 20 ng/mL).  Plates were then spun at 600xg for 90 minutes at room 

temperature and incubated at 32°C for 48-72 hours.  After transduction, cells infected with GFP-

containing constructs were sorted for GFP positivity using the MoFlo Astrios cell sorter (Beckman 

Coulter, Brea, CA, USA) at the MD Anderson Cancer Center North Campus Flow Cytometry 

Core Facility.     

 

qRT-PCR: Bone marrow and spleen samples were subjected to adequate red blood cell lysis 

with BD Pharm Lyse lysing solution (BD Biosciences, San Jose, CA, USA).  For all samples, 

RNA was extracted and purified using  phenol/chloroform.157  Samples were treated with DNAse 

for 30 minutes at 37°C, and quantified using a NanoDrop spectrophotometer (ThermoFisher 

Scientific, Waltham, MA, USA).  1µg of RNA was reverse transcribed using iScript (BioRad, 

Hercules, CA, USA).  qRT-PCR was performed using iTaq Universal SYBR Green Supermix as 

per manufacturer’s instructions (BioRad, Hercules, CA, USA) using an ABI StepOnePlus Real 

Time PCR System.  Changes in expression were determined by comparing expression to the 

housekeeping control Rplp0.  Expression of Hnrnpk was evaluated using primers as follows: 

Forward (sp240):  5’-GAAGATATGGAAGAGGAGCAAGCC-3’, Reverse (sp242): 5’-

CAAGGTAGGGATGATTTTCTTC-3’ (sp240-242), Rplp0 Forward: 5’-

CCCTGAAGTGCTCGACATCA-3’, Rplp0 Reverse: 5’-TGCGGACACCCTCCAGAA-3’.  
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Individual samples were assayed in triplicate, and calculations were performed using the Pfaffl 

method comparing expression changes between target genes and housekeeping control.158 

 

Western blotting: Cells were homogenized in NP40 lysis buffer containing protease and 

phosphatase inhibitors (Millipore Sigma, Burlington, MA, USA).  Soluble proteins were boiled in 

Laemmli buffer, resolved on a 10% SDS-PAGE gel, and transferred to a PVDF membrane.  

Membranes were blocked with 5% milk for one hour at room temperature and incubated with 

primary antibody at 4°C overnight while rocking.  Primary antibodies were hnRNP K (3C2, 

1:1000, Abcam, Cambridge, MA, USA) and b-actin (AC-15, 1:2000, Santa Cruz, Biotechnology, 

Dallas, TX, USA).  Membranes were incubated with secondary antibody and antibody-protein 

interactions were visualized using enhanced chemiluminescence (GE Healthcare, Chicago, IL, 

USA) or BCIP/NBT color development substrate (VWR International, Radnor, PA, USA).   

 

Colony formation assay: GFP sorted FLCs were cultured in quadruplicate wells of a 12-well plate 

in methylcellulose medium with cytokines IL-3, IL-6, erythropoietin, and stem cell factor 

(Methocult GF M3434, StemCell Technologies, Vancouver, Canada).  50,000 cells were plated 

per well and colonies were counted after 7 days.  Colonies were gently disrupted in PBS and 

cells counted manually with a hematocytometer using trypan blue dye exclusion, or subjected to 

cytospin or flow cytometry. Cytospins were stained with Wright-Giemsa.   

 

Flow cytometry: Cells were harvested and washed with PBS supplemented with 5% bovine 

serum albumin (BSA; Sigma Aldrich, St. Louis, MO, USA).  Prior to antibody staining, cells were 

treated with murine Fc block (TruStain FcX, BioLegend, San Diego, CA, USA) at room 

temperature for 15 minutes.  Cells were incubated with fluorescently labeled antibodies in the 

dark at room temperature for 30 minutes-1 hour.  Antibodies used: Gr1 [RB6-8C5], CD11b 

[M1/70;], CD117 [2B8], CD45 [30F11] (all from BD Biosciences, East Rutherford, NJ, USA), and 
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Sca-1 [D7; eBioscience, San Diego, CA, USA].  Flow cytometry was performed in the MDACC 

North Campus Flow Cytometry Core Facility using a Gallios flow cytometer (Beckman Coulter, 

Brea, CA, USA).  Data was analyzed using FlowJo Software (Beckton Dickinson, Franklin Lakes, 

NJ, USA).   

 

FLC transplantation: NOD-scid-IL2R-gamma (NSG) mice were purchased from the MDACC 

Department of Experimental Radiation Oncology.  NSG mice were sub-lethally irradiated with 2.5 

Gy administered as a single dose 4-24 hours prior to transplantation.  At least 40,000 (up to 

1x106) cells suspended in sterile PBS were injected into the retroorbital sinus of mice under 

isoflurane-induced anesthesia.  Engraftment was evaluated using in vivo bioluminescent imaging 

(see below) or flow cytometry analysis of peripheral blood.  In the latter case, blood was collected 

from the retro-orbital sinus of isoflurane-anesthetized mice on a monthly basis.    

 

In vivo bioluminescent imaging: Mice were injected intraperitoneally with D-luciferin, anesthetized 

with isoflurane, and imaged using an IVIS system (Xenogen/Caliper Life Sciences, Alameda, CA, 

USA).  Imaging was performed on a weekly basis beginning one week after transplantation to 

monitor and ensure engraftment.  

 

Peripheral blood analysis: Blood was collected from the retro-orbital sinus of isoflurane-

anesthetized mice into EDTA-coated tubes.  Complete blood count analysis was performed with 

an ABX Pentra analyzer (Horiba, Kyoto, Japan).  Peripheral blood smears were stained with 

Wright-Giemsa.   

 

Tissue procurement: At time of necropsy, spleen, liver, and sternum were collected from each 

mouse.  Tissues were fixed in 10% neutral-buffered formalin and processed by the Research 

Histopathology Facility at MD Anderson Cancer Center where paraffin-embedded blocks were 
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made and sectioned.  Each section was stained with standard hematoxylin/eosin staining.  Cells 

were also collected from femurs and remaining spleen in a single cell suspension, subjected to 

a gentle RBC lysis, and processed for western blotting or qRT-PCR as described above.     

 

Immunohistochemistry: Formalin-fixed paraffin-embedded tissues were deparaffinized in xylene 

and rehydrated in an alcohol gradient.  Antigen retrieval was performed using 10mM sodium 

citrate and 0.05% Tween 20 (pH 6.0) in a steam chamber for 45 minutes.  Slides were incubated 

in 3% hydrogen peroxide/methanol solution to deactivate endogenous peroxidases.  Incubation 

with primary antibody was at 4°C overnight in a humidity chamber.  Slides were washed with 

0.1% Tween-PBS before biotinylated secondary antibody was added at room temperature for 30 

minutes.  Antibody-protein interactions were visualized with Vectastain Elite ABC and DAB 

peroxidase substrate kits (Vector Laboratories, Burlingame, CA, USA).  For all antibodies, DAB 

time was 3 minutes.  Nuclear fast red was used as a counterstain.  Antibodies used for IHC are 

included in Table 2.   

 

Table 2. Antibodies used for IHC.  Antibodies used for immunohistochemistry.  With the 

exception of MPO, antibodies were monoclonal; therefore, the clone is listed in lieu of a catalog 

number.    

 

 

Antibody Clone Secondary antibody Vendor Dilution
hnRNP K 3C2 mouse Abcam 1:3000

CD34 MEC14.7 rat ThermoFisher 1:100
CD117 2B8 rat ThermoFisher 1:100
CD3 SP162 rabbit Abcam 1:150
MPO polyclonal; ab9535 rabbit Abcam 1:100
CD14 4B4F12 mouse Abcam 1:100
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Survival analysis: Kaplan-Meier curves were generated using Prism software (GraphPad 

Software, San Diego, CA).  Time between transplantation of FLCs and death or veterinarian-

mandated euthanasia was used for analyses.   
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3.3 Results 

hnRNP K can be overexpressed in murine FLCs  

 To evaluate whether the FLC system was suitable for modeling hnRNP K-

overexpression, we first infected FLCs with an hnRNP K-overexpression construct.  Compared 

to empty vector controls, these cells exhibited clear hnRNP K overexpression at both the RNA 

and protein levels (Figure 11).  This indicated that FLCs were capable of overexpressing hnRNP 

K, making these a suitable model system.     

 

Figure 11. FLCs can overexpress hnRNP K. A.  Bar graph of Hnrnpk qRT-PCR results, 

normalized to Rplp0, in FLCs infected with an hnRNP K-overexpression vector (red) or empty 

vector control (black). B. Representative western blot of FLCs infected with either hnRNP K-

overexpression vector or empty GFP control.  Cells were infected 48 hours prior to harvest.     

 

hnRNP K overexpression results in altered colony forming potential  

 To evaluate whether overexpression of hnRNP K had a biologic effect on FLCs, we 

performed colony formation assays.  These assays can be used to assess self-renewal capacity 

and differentiation potential of cells.184  When placed in colony formation assays, FLCs 
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overexpressing hnRNP K formed more colonies than empty vector controls (Figure 12A).  Of 

note, colonies from hnRNP K-overexpressing FLCs were also visibly larger than empty vector 

controls (Figure 12B), suggesting that hnRNP K-overexpression provides a proliferative 

advantage to these cells.   

 

Figure 12. hnRNP K overexpression increases colony formation potential of FLCs. A. Bar 

graph representing number of colonies formed per well in FLCs overexpressing hnRNP K (red) 

or empty vector controls (black).  B. Representative brightfield image of colonies from panel A.   

 

hnRNP K overexpression alters colony phenotype 

 Given the increase in colony formation in hnRNP K-overexpressing cells, we sought to 

examine the properties of the colonies that formed.  Morphologic differences were observable in 

Wright-Giemsa stained cytospins from colonies arising from hnRNP K-overexpressing cells 

compared to empty vector controls (Figure 13A).  In particular, cells from empty vector controls 

appeared relatively uniform, while colonies overexpressing hnRNP K were more varied in cell 

size and morphologic features.  To evaluate these differences in a more definitive manner, we 

examined cell surface marker expression by flow cytometry.  These experiments revealed that 

hnRNP K-overexpressing colonies had fewer mature myeloid cells (CD11b+Gr1+) compared to 

controls (Figure 13B).  Consistent with this lack of mature myeloid cells, hnRNP K-

overexpressing colonies were enriched in immature c-kit+Sca1+ cells (Figure 13C).  As 

hematopoietic stem cells differentiate, c-kit and Sca1 expression is downregulated.185-188  Thus, 

*A Empty GFP HNRNPK GFPB
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these data suggest that hnRNP K-overexpression results in maintenance of a stem-like 

phenotype, leading to decreased percentage of mature myeloid cells, and an increase in colony 

formation and self-renewal capacity.  This could also represent a differentiation block, which is a 

phenomenon often observed when leukemic cells are placed into colony formation assays.189  

 

Figure 13. hnRNP K-overexpressing colonies have altered immunophenotypes.  A.  Wright-

Giemsa stain of cytospins from representative colonies.  B.  Dot plot of Gr1 and CD11b 

expression from representative colonies.  Inset numbers indicate the percentage of cells that 

were Gr1+ and CD11b+.  C. Dot plot of Sca1 and c-kit expression from representative colonies.  
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Inset numbers indicate the percentage of cells that were Sca1+ckit+.  Flow cytometry data is 

gated on CD45+ cells.   

 

hnRNP K-overexpressing FLCs engraft in recipient mice  

 Since colony formation assays indicated that hnRNP K-overexpression altered the 

differentiation and self-renewal properties of FLCs, we next asked whether this would translate 

to a similar phenotype in vivo.  Thus, we injected luciferase-containing FLCs intravenously into 

sub-lethally irradiated NSG mice.  Serial in vivo imaging revealed luciferase activity in 

hematopoietic tissues (bone marrow and spleen) of transplanted mice (Figure 14A), indicating 

successful engraftment.  Interestingly, recipients of hnRNP K-overexpressing FLCs frequently 

had faster engraftment—a finding consistent with the increase in colony formation seen in Figure 

13.   

 Since luciferase-containing FLCs could be successfully transplanted into NSG mice 

regardless of hnRNP K expression, we next transplanted FLCs transduced with GFP-containing 

constructs.  The presence of GFP allowed us to sort and inject only cells that had successfully 

been infected with the viral constructs, thus ensuring a more homogeneous population.  Indeed, 

mice injected with GFP-containing FLCs had measurable GFP positivity in peripheral blood that 

was stable over time (Figure 14B).    
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Figure 14. hnRNP K-overexpressing FLCs engraft in recipient NSG mice. A. In vivo 

bioluminescent imaging of representative mice injected with either empty-Luciferase FLCs (left) 

or hnRNP K-overexpressing-Luciferase FLCs (right).  Images are from one representative mouse 

from each group at matching timepoints over the course of 6 weeks.  B.  Bar graphs of GFP 

positive cells in peripheral blood from mice injected with either empty-GFP FLCs (black) or 

hnRNP K-overexpressing-GFP FLCs (red).   

 

hnRNP K overexpression is maintained in vivo 

 To ensure that the transplanted FLCs maintained hnRNP K-overexpression as intended, 

we assessed cells from spleen and bone marrow of recipient mice.  qRT-PCR revealed 

consistently increased Hnrnpk expression in mice receiving hnRNP K-overexpressing FLCs 

compared to empty vector controls (Figure 15A).  Increased hnRNP K expression was also seen 

at the protein level in spleen (Figure 15B).  These findings support the notion that hnRNP K-

overexpressing FLCs can engraft in recipient mice and be maintained in an in vivo setting.   
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Figure 15. hnRNP K overexpression is maintained in vivo. A. Hnrnpk qRT-PCR, normalized 

to Rplp0, from spleen and bone marrow of mice transplanted with empty vector FLCs or hnRNP 

K-overexpressing FLCs (n=4).  B. Western blot from spleens of representative mice.  Each lane 

is an individual animal.  All samples were collected 4 weeks after transplant.  

 

Recipients of hnRNP K-overexpressing FLCs have a survival disadvantage 

 Our data have shown that hnRNP K-overexpressing FLCs engraft in recipient mice and 

maintain elevated hnRNP K expression (Figures 14, 15).  Next, we asked whether this affected 

the outcomes of the mice.  Strikingly, mice that received hnRNP K-overexpressing FLCs had 

substantially shortened overall survival compared to recipients of empty vector controls (Figure 

16).  Median survival for recipients of hnRNP K-overexpressing FLCs was 7.2 weeks, while 

median survival for recipients of empty vector controls was not reached (p=0.02).  Notably, mice 

were flagged for euthanasia due to hyperpnea, emaciation, and failure to thrive.   
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Figure 16. Survival of FLC recipients.  Kaplan-Meier curve of overall survival of mice 

transplanted with FLCs containing an empty vector control (black; n=13) or hnRNP K-

overexpression construct (green; n=20).   

 

Bone marrow is abnormal in mice receiving hnRNP K overexpressing FLCs 

 We next sought to understand the basis of the shortened survival observed in mice that 

received hnRNP K-overexpressing FLCs.  Since the transplanted FLCs were intended to 

reconstitute the bone marrow of recipient mice, we first examined this compartment.  Mice that 

received FLCs overexpressing hnRNP K had more cellular bone marrow compared to empty 

vector controls (Figure 17).  These cells were substantially skewed toward those with 

morphologic features consistent with myeloid differentiation.  In addition, mild eosinophilia was 

observed. 
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Figure 17. Recipients of hnRNP K-overexpressing FLCs have bone marrow abnormalities.  

H&E staining of sternal bone marrow from representative mice transplanted with empty vector 

control FLCs (left) or hnRNP K-overexpressing FLCs (right).   

 

Recipients of hnRNP K overexpressing FLCs exhibit splenomegaly 

 To evaluate whether these bone marrow abnormalities affected other organs, we next 

examined the spleen, since splenic abnormalities can reflect hematopoietic pathology.190  We 

observed that recipients of empty vector control FLCs had spleens that were approximately the 

size and weight of adult wildtype C57Bl6 animals191 (Figure 18)—consistent with efficient 

engraftment of FLCs derived from C57Bl6 mice (Figure 14).  However, mice that received hnRNP 

K-overexpressing FLCs exhibited modest splenomegaly (Figure 18), which can be indicative of 

hematopoietic disease.190   
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Figure 18. Recipients of hnRNP K-overexpressing FLCs develop splenomegaly.  A. Gross 

images of spleens from representative mice transplanted with either empty vector FLCs (left) or 

hnRNP K-overexpressing FLCs (right).  B. Quantitation of spleen weights.   

 

Recipients of hnRNP K-overexpressing FLCs have disrupted splenic architecture  

 We next sought to understand the basis of the splenomegaly in mice harboring hnRNP 

K-overexpression.  While recipients of control FLCs had splenic structure mimicking wildtype 

C57Bl6 mice, those that received hnRNP K-overexpressing FLCs had markedly disrupted splenic 

architecture (Figure 19).  Critically, hnRNP K expression was still abundant in these spleens 

(Figure 19A), supporting the notion that this aberrant hematopoiesis was driven by hnRNP K-

overexpression.  Spleens from hnRNP K-overexpressing mice had an increase in the number of 

cells expressing the immature hematopoietic stem cell markers CD34 and CD117 (Figures 19B, 

C).  The presence of these cell types indicated that extramedullary hematopoiesis, a pathologic 

process, was likely to be a factor underlying the observed splenomegaly.190    
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Figure 19. hnRNP K overexpression results in splenic extramedullary hematopoiesis. A.  

IHC staining of hnRNP K (A), CD34 (B), or CD117 (C) and corresponding H&E of spleen from 

representative mice transplanted with empty vector FLCs (left) or hnRNP K overexpressing FLCs 

(right).  Additional images in panel B from the Hnrnpk OE mouse are included.  
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Recipients of hnRNP K overexpressing FLCs have hepatic leukocyte infiltrates 

 Given the splenomegaly and altered splenic architecture in mice receiving hnRNP K- 

overexpressing FLCs, we next evaluated the liver, as this can be another site of extramedullary 

hematopoiesis.190  We observed a striking infiltration of cells into the hepatic parenchyma of mice 

receiving hnRNP K-overexpressing FLCs, but these cells were not present in mice transplanted 

with control FLCs (Figure 20A).  These cells stained largely negative for CD3, precluding the 

notion that these might be a reactive infiltration of T cells (Figure 20B).  A small subset of cells 

stained positive for CD117 (Figure 20C), indicative of extramedullary hematopoiesis.  

Interestingly, a large portion of these cells were CD14 positive, suggesting a monocytic lineage 

(Figure 20D).  Likewise, a subset of cells were also strongly positive for MPO (Figure 20E), often 

utilized as a defining characteristic of myeloid lineage cells.192  Due to the absence of infiltrating 

leukocytes, livers from recipients of control FLCs were completely negative for these markers.  

Taken together, these findings demonstrate that hnRNP K-overexpression promotes hepatic 

extramedullary hematopoiesis with a myeloid-lineage bias.   
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Figure 20. Hepatic extramedullary hematopoiesis in recipients of hnRNP K-

overexpressing FLCs.  A. H&E staining of liver from a representative mouse transplanted with 

empty vector control FLCs (left) or hnRNP K-overexpressing FLCs (right).  B-E.  Higher 

magnification immunohistochemistry in livers of representative mice transplanted with hnRNP K-

overexpressing FLCs.  Corresponding H&E staining is in the bottom panels.   

 

Mice receiving hnRNP K-overexpressing FLCs have abnormal blood counts 
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 We next evaluated how this aberrant hematopoiesis affected the components of 

peripheral blood.  Recipients of hnRNP K-overexpressing FLCs showed an increase in total white 

blood cell counts (Figure 21A).  Likewise, a decrease in segmented cells (neutrophils) was 

evident in these recipients compared with empty vector controls (Figure 21B).  A slight increase 

in lymphocytes was evident in hnRNP K-overexpressing FLC recipients (Figure 21C).  Eosinophil 

percentages were also significantly increased in the context of hnRNP K overexpression (Figure 

21D).  Monocyte percentages were unchanged between groups (Figure 21E).  While not 

statistically significant, the percentage of large immature cells (LICs), trended towards increased 

in recipients of hnRNP K-overexpressing FLCs (Figure 21F).  Differences in platelet count and 

hemoglobin were not evident between groups (Figures 21G).  These observations indicate that 

hnRNP K-overexpression affects predominantly leukocytes, while largely sparing red blood cell 

and platelet production.   

 

Figure 21. Peripheral blood counts in mice transplanted with FLCs.  Bar graphs of A. White 

blood cell count (WBC) B. Segmented cell percentage C. Lymphocyte percentage D. Eosinophil 
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percentage E. Monocyte percentage F. Large immature cell (LIC) percentage G. Platelet (Plt) 

count H. Hemoglobin (Hgb) in recipients of hnRNP K-overexpressing FLCs (red) or empty vector 

control FLCs (black).  

 

Peripheral blood smears are abnormal in recipients of hnRNP K-overexpressing FLCs 

To visualize and confirm findings from our CBC analyses, we examined peripheral blood 

smears from our mice.  Recipients of hnRNP K-overexpressing FLCs frequently had large 

numbers of WBCs, with numerous leukocytes present in a high-powered field.  We observed 

myeloid cells in various levels of maturation (Figures 22B-E)—indicative of bone marrow stress.  

In addition, several mice had large numbers of highly abnormal leukocytes appearing to be 

myeloid in origin (Figures 22F-H).  In line with the CBC data, circulating eosinophils were also 

present (Figure 22I).   
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A
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Figure 22. Peripheral blood is abnormal in recipients of hnRNP K-overexpressing FLCs.  

Wright-Giemsa staining of peripheral blood smears from an empty vector control (A) or recipients of 

hnRNP K-overexpressing FLCs (B-I).  Red arrows indicate cells with morphologic features 

consistent with bands (B), metamyelocytes (C), myelocytes (D), or promyelocytes (E). F-H highlight 

other circulating abnormal leukocytes.  I.  Red arrows indicate eosinophils.    
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3.4 Discussion 

Based on our clinical observations of increased hnRNP K expression in AML and its 

correlation with inferior clinical outcomes (Chapter 2), we proposed that hnRNP K may have 

oncogenic capability when overexpressed.  To formally test this hypothesis, we transplanted 

mice with hematopoietic stem and progenitor cells (from the fetal liver) that were stably 

transduced to overexpress hnRNP K.  Recipients of these cells had substantially shortened 

survival (Figure 16) and grossly aberrant hematopoiesis, characterized by bone marrow 

harboring substantial morphologic myeloid hyperplasia, extramedullary hematopoiesis in the 

spleen and liver, and circulating immature myeloid cells (Figures 17-22).  These findings support 

the notion that hnRNP K overexpression drives myeloproliferative disease in mice.   

hnRNP K-overexpression in FLCs led to increased colony formation in methylcellulose 

(Figure 12), suggesting that hnRNP K can alter a cell’s ability to self-renew and to differentiate.  

Thus, our findings insinuate that hnRNP K overexpression may influence the stemness of 

hematopoietic cells.  It would then follow that compared to wildtype hematopoietic stem cells, 

fewer hnRNP K-overexpressing cells would be required to reconstitute hematopoiesis in a 

lethally-irradiated recipient mouse.  While we did not perform these limiting dilution studies, these 

future pursuits would be of interest.   

Despite not being routinely reported in the literature, we used an empty vector control to 

abrogate alterations in FLC characteristics due solely to transduction.  Since the focus of this 

chapter was on the influence of hnRNP K overexpression in a mouse model, however, we did 

not fully characterize the impact of altered hnRNP K levels in the initial FLCs.  Therefore, we 

cannot definitively conclude that the hnRNP K-overexpressing FLCs transplanted into recipient 

mice were immunophenotypically identical to the empty vector controls.  However, we performed 

our experiments with numerous primary transplant models and generated very similar results.  

To characterize these models in greater depth, as well as to more quantitatively assess their 

oncogenic properties, secondary transplants are currently underway.  Preliminary data indicate 
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cells from several primary recipients of hnRNP K-overexpressing FLCs have been successfully 

transplanted into secondary recipients.   

In these studies, we transplanted FLCs into immunocompromised NSG mice.  While use 

of these mice exponentially diminishes the probability of transplant rejection, due to a grossly 

absent adaptive immune system, this is a suboptimal model for evaluating other aspects of 

biology, particularly host immune response.193, 194  Since these cells are isolated from C57Bl6 

mice, mice of this immunocompetent background are also suitable transplant recipients for these 

FLCs.180  These mice are particularly useful models for evaluating treatment response, including 

to immunotherapies.195, 196  Therefore, future studies transplanting hnRNP K-overexpressing 

FLCs into immunocompetent mice would be worthwhile.  

The myeloproliferative phenotype observed with hnRNP K overexpression in our FLC 

transduction and transplantation model is particularly intriguing for several reasons.  We have 

recently described a mouse model wherein hnRNP K is overexpressed in the B-cell 

compartment.83  These mice develop highly penetrant, transplantable B-cell lymphomas that 

faithfully recapitulate clinical characteristics of human diffuse large B-cell lymphoma (DLBCL), 

where we observed high expression of hnRNP K.83  Interestingly, none of the mice that received 

hnRNP K-overexpressing FLCs in our current study developed lymphoma.  Since these 

experiments placed hnRNP K-overexpression in hematopoietic stem cells, this suggests that 

high hnRNP K expression favors myeloid differentiation.  Consistent with this, microarray data in 

normal human hematopoiesis revealed RNA expression of HNRNPK was substantially higher in 

progenitor cells with a myeloid bias (common myeloid progenitors, granulocyte-monocyte 

progenitors, or megakaryocyte-erythroid progenitors) than in lymphoid-committed progenitor 

cells.171  Other groups have also confirmed this, with HNRNPK being observed at much higher 

levels in myeloid-committed progenitors compared to lymphoid-biased cells.197   

This notion that hnRNP K overexpression causes a myeloproliferative phenotype in our 

current mouse model is also captivating given that a strikingly similar phenotype is observed in 
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mice that are haploinsufficient for Hnrnpk.53  These mice also have shortened survival, mediated 

most frequently by a phenotype involving myeloid hyperplasia, though a subset of Hnrnpk+/- 

animals also develop lymphoma or other tumors.53  Such an observation strongly suggests that 

normal hematopoiesis, particularly myelopoiesis, requires exquisitely tight regulation of hnRNP 

K expression.   

In particular, an interesting similarity between these two mouse models was eosinophilia 

(Figures 21, 22).  While myeloid malignancy can cause this phenomenon, more common causes 

of eosinophilia include allergic reaction or parasitic infection.198  In our current study, we did not 

observe any obvious infections in the mice.  While the recipients of empty vector control FLCs 

did not exhibit increased peripheral blood eosinophils, it is possible that hnRNP K-overexpressing 

FLCs could confer an immunologic deficit to recipient mice, thus predisposing this group to 

parasitic infections.  However, the absence of visible signs of parasitic infection in these mice, 

such as diarrhea, abdominal swelling, or substantial weight loss, diminish interest in this 

possibility.  In humans, rare cases of T-cell malignancies secreting cytokines (mostly IL-5) that 

stimulate eosinophil production have also been described as a mechanism of eosinophilia.199  

We did not evaluate IL-5 levels in our mice; however, it is possible that hnRNP K-overexpression 

alters secretion of cytokines, including those that promote eosinophil development.  Given that 

increased eosinophils were evident in recipients of hnRNP K-overexpressing FLCs and Hnrnpk+/- 

mice53, it is possible that this is a manifestation of the aberrant myeloid development driven by 

hnRNP K.  Of note, clinical eosinophilia is observed in cases of AML with core-binding factor 

abnormalities, usually in cases of inv(16) or t(16;16), and occasionally t(8;21).200, 201  These 

chromosomal aberrations result in altered RUNX1 transcriptional programs—a topic that will be 

addressed in Chapters 4 and 5 as a possible mechanism of hnRNP K-mediated oncogenesis.   
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Chapter 4 

Examining the molecular basis of the oncogenic function of hnRNP K 
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4.1 Introduction 

In acute myeloid leukemia (AML), hnRNP K overexpression occurs in approximately 20% 

of cases (Chapter 2).  This increased expression is correlated with decreased remission 

durations and overall survival (Chapter 2).  To formally test the hypothesis, then, that hnRNP K 

is a yet uncharacterized oncogene in AML, we developed a mouse model wherein hnRNP K is 

overexpressed in hematopoietic stem cells (Chapter 3).  These mice developed hematologic 

malignancies characterized by splenomegaly, abnormal blood counts, hepatic infiltration of 

immature myeloid cells, and early death (Chapter 3).  In this chapter, we aimed to define the 

mechanisms by which overexpression of hnRNP K causes such disease by examining the 

molecular basis of the oncogenic function of hnRNP K.  

hnRNP K is a ssDNA/RNA-binding protein implicated in a myriad of biologic processes.  

These include signal transduction39-43, chromatin remodeling44-47, transcription48-54, RNA 

splicing55-59, mRNA stability60-62, and translation54, 63-69.  In our recent model of B-cell lymphomas, 

hnRNP K overexpression caused malignant transformation by stabilizing MYC RNA and 

promoting translation of c-Myc.83  Contrastingly, HNRNPK haploinsufficient mice developed 

myeloid neoplasms via transcriptional deregulation of Cdkn1a, Cebpa, and Cebpb.53   

The multifunctionality of hnRNP K is due in large part to its composite domains.  With 

both a nuclear localization signal (NLS) and a nuclear shuttling domain (KNS), hnRNP K can 

move bi-directionally between nucleus and cytoplasm.70, 71  This protein contains three K 

homology (KH) domains, which recognize single-stranded nucleic acid—either DNA or RNA.74  

In addition, an unstructured region (K-interactive [KI]) resides between the terminal KH domains, 

and is where most known protein interactions occur.72, 73  This domain allows hnRNP K to be part 

of multi-protein complexes, which may affect its nucleic acid binding activities. 41, 73 

In this chapter, we sought to determine which of hnRNP K’s functions was most critical 

to the development of myeloid neoplasia in the context of hnRNP K overexpression.   
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4.2 Materials/Methods 

Immunoprecipitation-mass spectrometry: OCIAML3 cells were transduced with pCDH-510-rtTA-

EF1-puro202 and pCDH-TRE-HNRNPK-EF1-CopGFP prior to selection in puromycin and 

fluorescence-activated cell sorting for GFP-positive cells.  Cells transduced with pCDH-TRE-

EF1-CopGFP plasmid served as negative (empty vector) controls.  hnRNP K overexpression 

was induced by exposing cells to 1 µg/mL of doxycycline for 32 hours.  Nuclear and cytoplasmic 

fractions were separated by dounce homogenization as described.203  Immunoprecipitation was 

performed with antibodies against hnRNP K (D6, Santa Cruz Biotechnology, Dallas, TX, USA) 

or IgG (ab18413, Abcam, Cambridge, MA, USA).  Proteins immunoprecipitated out of solution 

were resolved on a 4-15% SDS-PAGE gel and silver stained (catalog# 24612, Thermo Fisher, 

Waltham, MA, USA).  Bands of visibly different intensities were excised and digested in the gel 

with 200ng of sequencing grade trypsin (Promega, Madison, WI, USA) at 37°C for 18 hours.  The 

extracted bands were then analyzed by high-sensitivity liquid chromatography with tandem mass 

spectrometry (LC-MS-MS) with an orbital ion-trap mass spectrometer (Orbitrap Elite, Thermo 

Fisher Scientific, Waltham, MA, USA).  Proteins were subsequently identified by searching the 

fragment spectra against the SWISS-PROT database204 (EBI) using Mascot205 (Matrix Science, 

Boston, MA, USA) or Sequest206 (Thermo Fisher Scientific, Waltham, MA, USA).  Further details 

are available elsewhere.83 

 

Formaldehyde-RNA immunoprecipitation (fRIP): fRIP was performed using a modified protocol 

described previously.207  100 million OCIAML3 cells were resuspended to a final concentration 

of 1x106 cells/mL in RPMI 1640 media without FBS or antibiotics.  Cross-linking was performed 

via addition of formaldehyde to a final concentration of 0.25% and incubated at room 

temperature.  After 20 minutes, glycine at a final concentration of 125mM was used to quench 

the reaction. Fixed cells were pelleted and resuspended in polysome lysis buffer (100mM KCl, 

5mM MgCl2, 10mM HEPES (pH 7.0), 0.5% NP40, 1mM DTT, 100 units/mL RNaseOut (Thermo 
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Fisher Scientific, Waltham, MA, USA), 400µM vanadyl ribonucleoside complex (VRC), and 

protease inhibitor cocktail (Roche, Basel, Switzerland)) and left at -80°C overnight.  After thawing 

on ice, the suspension was lysed with a digital sonifier at 10% amplitude in 1 second bursts 

followed by 4 seconds of rest for a total of 90 seconds.  Lysates were subsequently cleared by 

high-speed centrifugation at 4°C and pre-cleared using protein A and protein G beads in a 1:1 

ratio.  Beads coated with hnRNP K antibodies were suspended in NT2 buffer (50 mM Tris-HCl 

(pH 7.4), 150mM NaCl, 1mM MgCl2, 0.05% IGEPAL) supplemented with RNaseOut, VRC, DTT, 

and EDTA.  Next, 10% of the pre-cleared lysate removed to serve as the “input” sample, and the 

remainder was added to the bead slurry.  The bead-lysate mixture was incubated while tumbling 

at room temperature.  After 2 hours, the mixture was washed four times with NT2 buffer.  

Crosslinking was reversed in the lysates by addition of NaCl (final concentration 200 mM) and 

proteinase K (final concentration 20mg/mL), incubated at 42°C for one hour, then moved to 65°C 

for an additional hour.  Remaining RNA was isolated using Trizol (Sigma-Aldrich, St. Louis, MO, 

USA), purified, and concentrated with Zymo RNA Clean and Concentrator Kit, as per 

manufacturer instructions (Zymo Research, Irvine, CA, USA).  Finally, RNA was reverse 

transcribed to cDNA and subjected to single-read sequencing on an Illumina HiSeq 2000 at 36 

nucleotides per read at the MD Anderson Sequencing Core.  All samples were performed in 

triplicate.  These data is now publicly available under GSE126479 in the Gene Expression 

Omnibus.83 

 

fRIP analysis: Raw reads were trimmed to a minimum length of 25 base pairs using FLEXBAR.208  

BOWTIE2209 was used to align trimmed reads to Genome Reference Consortium Human Build 

38 (GRCh38),210 and outputted as .sam files, which were converted to .bam files using 

SAMtools.211  This algorithm was then used to index, sort, and filter unique read counts per 

alignment.  Differential representation between input and immunoprecipitated (IP) samples was 

done with Cufflinks, Cuffmerge, and Cuffdiff.212, 213  Using Cuffdiff, q-values were calculated 
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comparing input to IP samples.  Peaks were visualized in Integrative genomics viewer (IGV).214  

Output was sorted by q-value, indexed, and subsetted by causal implication in cancers using 

datasets of known tumor suppressors and oncogenes.215, 216 Further details with analysis 

specifications are available elsewhere.83 

 

Native RNA immunoprecipitation (RIP): OCIAML3 cells were lysed and processed according to 

manufacturer’s instructions using the Magna-RIP RNA-binding protein immunoprecipitation kit 

(Millipore, Burlington, MA, USA).  In brief, cells were lysed in RIP lysis buffer and incubated with 

magnetic beads and 5µg of either IgG or hnRNP K antibodies (3C2, Abcam, Cambridge, MA, 

USA) at 4°C for three hours.  After washing, RNA-protein complexes were subsequently 

disrupted by incubating with the presence of proteinase K.  RNA was then extracted, purified, 

and DNase treated at 37°C for one hour.  Reverse transcription of RNA was performed as with 

other PCR assays using iScript cDNA synthesis kit (BioRad, Hercules, CA, USA).  qRT-PCR was 

performed with iTaq Universal SYBR green using an ABI StepOnePlus Real Time PCR machine.   

 

Identifying putative hnRNP K binding sites:  A computer-based algorithm was developed to scan 

the RUNX1 transcript for possible hnRNP K binding sites.  Putative hnRNP K consensus RNA-

binding sequences67, 217 contained either ³2 (U/C)CCC motifs within 19 nucleotides or a motif 

consisting of: CCAUCN2-7(A/U)CCC(A/U)N7-18UCA(C/U)C, where N is any nucleic acid.  Further 

details are available elsewhere.83 

 

Recombinant hnRNP K protein expression and purification:  Using ligation-independent 

cloning218, the DNA sequence encoding full-length hnRNP K was placed into the pNic28-Bsa4 

plasmid with a TEV protease cleavage site immediately upstream of HNRNPK.  E. coli 

transformed with this plasmid were grown at overnight at 37°C in auto-induction media.  After 
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centrifugation, cell pellets were stored at -80°C overnight, thawed, and resuspended in 50mM 

HEPES, 300mM NaCl, 10% glycerol, 0.5mM TCEP, complete protease inhibitors, 0.5mg/mL 

lysozyme, and 20µg/mL DNase at pH 8.0 and lysed by sonication.  Lysate was then centrifuged 

at 18,000 rpm for one hour at 4°C.  Full-length hnRNP K protein was purified from the clarified 

lysate with Ni-NTA resin in 50mM HEPES with 300mM NaCl at pH 8.0.  To remove contaminating 

proteins, the resin was washed with 50mM HEPES, 300mM NaCl, and 20mM imidazole.  

Recombinant hnRNP K protein was eluted with 500mM imidazole.  His6-TEV protease was used 

to cleaved the N-terminal His-tag during dialysis against 50mM HEPES, 150mM NaCl, and 

0.5mM TCEP at pH 7.5.  This solution was passed through the Ni-NTA column to remove the 

cleaved His-tag as well as the remaining TEV protease.  Size exclusion chromatography was 

then performed using a Superdex 200 column equilibrated with 20mM HEPES, 200mM NaCl, 

5% glycerol, and 0.5mM TCEP at pH 7.5. After these steps, SDS-PAGE analysis indicated the 

recombinant full-length hnRNP K protein was >95% pure.   

 

Fluorescence anisotropy: RNA oligonucleotides with a 5’ 6-FAM label were purchased from 

Sigma Aldrich (St. Louis, MO, USA) and used at a final concentration of 2nM.  Sequences are 

included in Table 3.  Recombinant hnRNP K protein, serially diluted in PBS to range from 0.1nM 

to 10µM, was added to the oligos.  Fluorescence anisotropy (FA) values were measured with 

excitation wavelength 485nm and emission wavelength detected at 528nm on a Synergy Neo 

multi-mode plate reader (BioTek, Winooski, VT, USA).  Fluorescein at 10nM was used as an 

internal standard.  All readings were done at room temperature and performed in at least 

triplicate.  FA data was analyzed with Prism 8.  Data was fit to the following equation:  

FA=FAi+Bmax*[oligo]/(Kd+[oligo]) where initial FA is represented by FAi and the overall change in 

FA is represented by Bmax.  Here it is relevant to note that I adore penguins as much as Sean 

Post loves Bmax.  
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Table 3. Fluorescence anisotropy oligos. Human and mouse sequences of RNA oligos used 

for fluorescence anisotropy assays.  Sequences are listed from 5’ to 3’.  Red letters highlight 

where mutations were made.  

 

Thermal shift assay: The thermal shift assay was performed in a 96-well plate using SYPRO 

orange dye in a StepOne Plus Real Time PCR System (Applied Biosystems, Foster City, CA, 

USA).  The reaction was prepared in PBS buffer and contained 5µM of recombinant hnRNP K 

protein, SYPRO orange dye at a final concentration of 2X and DNA oligos at 1µM, 2.5µM, and 

5µM.  Oligos used were the DNA equivalents to those used in the fluorescence anisotropy 

assays.  The total reaction volume was 20µL and 4 technical replicates were done for each 

sample.  Negative control samples containing no protein were also run on the same plate.  The 

samples were heated from 25°C to 99°C and the fluorescence measured at each temperature 

increment.  The first derivative of fluorescence was calculated at each temperature and the 

temperature corresponding to the minima was designated as the melting temperature of the 

sample.   

 

  

Name Sequence
hRUNX1 1bs UCCCCUC
hRUNX1 2bs UCCCCUCCCC
hRUNX1 3bs UCCCCUCCCCUCCC
hRUNX1 5' UTR CGCCCCCCCCCACCCCCCGCAGUAAUAAAGGCCCCUGA
hRUNX1 5' UTR (mut) CGCGCGCGCGCACGCGCCGCAGUAAUAAAGGCGCCUGA
hRUNX1 int5-6 UCUCUUCCCUCCCUCCUUCCCUCCCCCCAU  
hRUNX1 int5-6 (mut) UCUGUUCGCUCGCUCGUUCGCUCGCGCCAU

Name Sequence
mRunx1 intron 5-6 UCCUCCUCCCUUCCCCUCCCGGUCCCUA 
mRunx1 intron 5-6 (mut) UCCUCCUCGCUUCGCCUCGCGGUCGCUA 

Human

Mouse
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4.3 Results 

hnRNP K interacts with RNA processing machinery and ribosomal subunits 

Given the plethora of cellular processes in which hnRNP K has been implicated, we 

performed hnRNP K immunoprecipitation (IP) followed by mass spectrometry to identify proteins 

with which hnRNP K interacts. In a human AML cell line, OCIAML3, compared to IgG IP, hnRNP 

K IP pulled down multiple proteins that were clearly visible after silver staining (Figure 23A).  This 

was true in both cytoplasmic and nuclear fractions of OCIAML3 cells.  Endogenous cytoplasmic 

hnRNP K was found to interact with numerous ribosomal proteins (Figure 23B).  In the nucleus, 

hnRNP K interacting partners were enriched for RNA-binding proteins in addition to ribosomal 

proteins (Figure 23B).  Gene ontology (GO) analyses219 from each fraction indicate hnRNP K 

interacts with proteins involved in translation and RNA binding/modification (Figures 23C,D).  

Together, this strongly indicates that hnRNP K is involved in post-transcriptional processes.     
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Figure 23. Immunoprecipitation followed by mass spectrometry reveals hnRNP K 

interacting partners.  A.  Silver stain of SDS-PAGE blots from OCIAML3 cells fractionated to 

cytoplasmic (left) and nuclear (right) compartments.  IPs were performed with either IgG or 

hnRNP K (hnK).  Red arrows indicate bands that were excised and sent for mass-spectrometry.  

B.  Proteins co-immunoprecipitated with hnRNP K were visualized with Cytoscape.220 C-D. Gene 

ontology (GO) analyses of proteins immunoprecipitated with hnRNP K in cytoplasmic (C) or 

nuclear (D) fractions.  Blue bars divide proteins by biologic process and green bars divide 

proteins by molecular function.  Bars indicate statistical significance of proteins falling into the 
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Nuclear Fraction
GOTERM BP # -log(p-value) % PValue
translation 15 34.09 1.12E-15
SRP-dependent cotranslational protein targeting to membrane 11 25 3.04E-14
viral transcription 11 25 1.84E-13
mRNA splicing, via spliceosome 13 29.55 2.26E-13
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 11 25 3.42E-13
translational initiation 11 25 1.43E-12
rRNA processing 12 27.27 4.48E-12
gene expression 8 18.18 2.94E-11
mitochondrial translational elongation 7 15.91 7.38E-08
mitochondrial translational termination 7 15.91 7.92E-08
RNA processing 7 15.91 1.63E-07
mRNA processing 7 15.91 5.93E-06
negative regulation of mRNA splicing, via spliceosome 4 9.091 2.01E-05
RNA splicing 6 13.64 6.31E-05
osteoblast differentiation 5 11.36 1.42E-04
negative regulation of telomere maintenance via telomerase 3 6.818 4.16E-04
3'-UTR-mediated mRNA stabil ization 3 6.818 8.50E-04
negative regulation of translation 3 6.818 0.00967
CRD-mediated mRNA stabil ization 2 4.545 0.01274
ribosomal large subunit assembly 2 4.545 0.05245
DNA damage response, detection of DNA damage 2 4.545 0.08826
ribosome biogenesis 2 4.545 0.08826

GOTERM CC # -log(p-value) % PValue
intracellular ribonucleoprotein complex 17 38.64 8.25E-24
ribosome 12 27.27 1.15E-13
nucleoplasm 29 65.91 1.80E-13
cytosolic small ribosomal subunit 8 18.18 1.67E-11
catalytic step 2 spliceosome 9 20.45 3.88E-11
viral nucleocapsid 7 15.91 4.35E-11
extracellular matrix 11 25 1.31E-09
membrane 22 50 3.52E-09
small ribosomal subunit 6 13.64 4.47E-09
extracellular exosome 22 50 2.76E-07
mitochondrial small ribosomal subunit 5 11.36 3.3E-07
nucleus 30 68.18 3.50E-07
spliceosomal complex 6 13.64 2.7E-06
focal adhesion 9 20.45 3.14E-06
cytosolic large ribosomal subunit 5 11.36 2E-05
nucleolus 11 25 2.34E-05
cytoplasmic ribonucleoprotein granule 4 9.091 2.7E-05
mitochondrial inner membrane 8 18.18 7.03E-05
nuclear chromatin 5 11.36 0.00109
CRD-mediated mRNA stabil ity complex 2 4.545 0.01408
large ribosomal subunit 2 4.545 0.03254
cytosol 14 31.82 3.79E-02
telomerase holoenzyme complex 2 4.545 0.04842
nuclear euchromatin 2 4.545 0.06183
cytoplasm 18 40.91 8.19E-02
polysome 2 4.545 0.08594
mitochondrion 7 15.91 9.06E-02

p-value < 0.001

GOTERM MF # -log(p-value) % PValue
poly(A) RNA binding 39 9E-40 1.12E-15
structural constituent of ribosome 18 2E-21 3.04E-14
nucleotide binding 15 9E-14 1.84E-13
protein binding 38 3E-06 2.26E-13
nucleic acid binding 15 8E-08 3.42E-13
rRNA binding 5 3E-06 1.43E-12
RNA binding 24 2E-23 4.48E-12
mRNA binding 5 3E-04 2.94E-11
protein kinase binding 4 0.07 7.38E-08
mRNA 3'-UTR binding 3 0.007 7.92E-08
core promoter binding 3 0.012 1.63E-07
single-stranded DNA binding 3 0.023 5.93E-06
poly(A) binding 2 0.033 2.01E-05
N6-methyladenosine-containing RNA binding 2 0.018 6.31E-05
poly(G) binding 2 0.018 1.42E-04
telomerase RNA binding 2 0.04 4.16E-04
AU-rich element binding 2 0.042 8.50E-04

p-value < 0.001

p-value < 0.001
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B Nuclear FractionCytoplasmic Fraction
GOTERM BP # -log(p-value) % PValue
SRP-dependent cotranslational protein targeting to membrane 15 78.95 3.24E-29
viral transcription 15 78.95 4.44E-28
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 15 78.95 1.09E-27
translational initiation 15 78.95 8.70E-27
rRNA processing 15 78.95 5.66E-24
translation 15 78.95 6.26E-23
ribosomal large subunit assembly 2 10.53 2.23E-02
cytoplasmic translation 2 10.53 2.65E-02
ribosome biogenesis 2 10.53 3.79E-02

p-value = 0.001

GOTERM MF # -log(p-value) % PValue
structural constituent of ribosome 15 78.95 8.92E-24
poly(A) RNA binding 16 84.21 1.46E-15
rRNA binding 6 31.58 4.83E-10
RNA binding 9 47.37 3.80E-08
5.8S rRNA binding 2 10.53 3.20E-03
protein binding 16 84.21 6.14E-03
small ribosomal subunit rRNA binding 2 10.53 8.50E-03

p-value = 0.001

GOTERM CC # -log(p-value) % PValue
ribosome 13 68.42 3.84E-21
focal adhesion 12 63.16 1.07E-14
cytosolic large ribosomal subunit 8 42.11 2.26E-13
extracellular matrix 10 52.63 2.98E-12
cytosolic small ribosomal subunit 7 36.84 4.38E-12
cytosol 16 84.21 3.59E-09
membrane 14 73.68 5.32E-09
extracellular exosome 14 73.68 1.09E-07
intracellular ribonucleoprotein complex 6 31.58 1.70E-07
small ribosomal subunit 4 21.05 2.33E-06
nucleolus 8 42.11 1.00E-05
cytoplasmic ribonucleoprotein granule 3 15.79 2.73E-04
nucleoplasm 8 42.11 1.30E-02
nucleus 11 57.89 1.95E-02
polysome 2 10.53 3.69E-02
cytoplasm 10 52.63 4.53E-02

p-value = 0.001

Gallardo et al Supplemental Figure 4 cont.

C Cytoplasmic FractionC D
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associated categories.  Figure partially reproduced with permission from Gallardo & Malaney et 

al., JNCI, 2019.83 

 

hnRNP K interacts with numerous RNA transcripts, including RUNX1 

As indicated by the hnRNP K IP-MS, hnRNP K interacts with numerous proteins that bind 

RNA and/or are involved in RNA processing.  To understand how modulation of RNA species 

might contribute to leukemogenesis, we sought to identify the RNA targets with which hnRNP K 

interacts.  Formaldehyde-RNA immunoprecipitation followed by sequencing revealed that 

hnRNP K was associated with numerous transcripts, including many involved in cancer 

progression.  When evaluated in the context of known tumor suppressors or oncogenes, one of 

the most significant hnRNP K-associated transcripts was that of RUNX1, which a critical 

transcription factor for both normal and malignant hematopoiesis221 (Figure 24).     

 

Figure 24. hnRNP K binds to the RUNX1 transcript.  Depiction of hnRNP K-associated 

transcripts as determined by fRIP analyses.  Results are subsetted based on a list of known 

oncogenes/tumor suppressors. The dotted line indicates a cutoff representing a q-value of 0.05.  

Figure modified with permission from Gallardo & Malaney et al., JNCI, 2019.83 

 

RUNX1
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hnRNP K interacts with RUNX1 transcript 

To validate the finding from fRIP-Seq that hnRNP K interacts with RUNX1, we performed 

native RIP followed by PCR.  Indeed, RUNX1 mRNA was substantially enriched after hnRNP K 

IP compared to input (Figure 25).  This supports the notion that hnRNP K interacts with RUNX1 

in human AML cells.    

 

Figure 25. RUNX1 mRNA interacts with hnRNP K.  Bar graph illustrating fold change of 

RUNX1 RNA in input sample of OCIAML3 cells compared with hnRNP K IP.  Data is represented 

as fold change of input (black) or hnRNP K IP (red) as compared to IgG IP.   

 

RUNX1 RNA harbors putative hnRNP K binding sites 

Given our fRIP and RIP data indicating that hnRNP K binds human RUNX1, we sought 

to determine whether this occurred in a sequence-specific manner.  Knowing that hnRNP K is a 

poly-C binding protein222, we used a computer program to scan the human RUNX1 transcript for 

multiple stretches of at least three cytosine residues.  We identified two putative hnRNP K binding 

sites in the human RUNX1 transcript (Figure 26).  One binding site was located in the 5’ 

untranslated region (UTR) of the majority of RUNX1 isoforms.  No analogous hnRNP K binding 
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site was identified in murine Runx1.  In contrast, a second consensus hnRNP K binding site was 

identified at an intron-exon boundary in human RUNX1; this site was also found in murine Runx1 

isoforms (Figure 26).  In the majority of RUNX1 isoforms, this site exists at the boundary of intron 

3 and exon 4.  Of note, we have referred to this site as intron 5-6, since this is its location in the 

longest isoform of RUNX1 (RUNX1C; ENST00000300305.7). 

   

 

Figure 26. Predicted hnRNP K binding sites in RUNX1.  Poly(C) regions in the RUNX1 

transcript are denoted by black boxes.  A cluster of 2 poly(C) regions within 19 nucleotides or 4 

poly(C) regions within 38 nucleotides constitutes the hnRNP K consensus binding sequence, as 

reported in the literature67, 217; these are indicated in red.  

 

hnRNP K binds tightly to poly(C) containing RNA 

To evaluate whether hnRNP K was capable of directly binding the predicted sites in 

RUNX1, we performed fluorescence anisotropy (FA) studies using recombinant hnRNP K 
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protein.  In these assays, a 6-FAM labelled RUNX1 RNA containing the predicted hnRNP K 

binding site was placed into solution with recombinant full-length hnRNP K protein.  In the 

absence of protein binding, the fluorescently labelled oligonucleotide rotates rapidly in solution, 

being measured as low anisotropy.  Upon protein binding, the rotation of the oligonucleotide in 

solution is reduced, and is measured as high anisotropy.223, 224  Oligos, derived from the RUNX1 

transcript, containing 1, 2 or 3 poly(C) stretches were used in the FA assays.  Multiple stretches 

of poly(C) residues enhanced hnRNP K/RNA binding, (Figure 27), indicating more efficient 

binding with oligos containing multiple stretches of poly(C) residues.   

 

Figure 27. hnRNP K binds stretches of poly(C) RNA derived from RUNX1. A. Fluorescence 

anisotropy curves as a function of increasing hnRNP K concentration.  RNA oligos contained 

increasing numbers of poly(C) regions derived from the RUNX1 intron 5-6 sequence. B.  

Summary Kd values for data presented in panel A.   

 

hnRNP K specifically binds RUNX1 RNA 

It is clear that hnRNP K stringently binds portions of RNA derived from the RUNX1 

transcript.  To evaluate whether hnRNP K was capable of binding larger portions of RUNX1 that 

may form secondary structures, we performed fluorescence anisotropy studies with longer 

portions of the endogenous RUNX1 RNA.  At all predicted hnRNP K binding sites—5’ UTR in 

human and intron 5-6 in human and mouse—hnRNP K was found to bind strongly (Figure 28).  
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Critically, in each instance, mutations in that disrupted any triple C sequence markedly abrogated 

hnRNP K binding (Figure 28).  This demonstrates that hnRNP K is capable of binding RUNX1 

RNA in a stringent, sequence-specific manner.   

 

Figure 28. hnRNP K binds human and mouse RUNX1.  Curves representing fluorescence 

anisotropy as a function of increasing hnRNP K protein concentration.  Oligos spanning the 

predicted hnRNP K binding sequence in: A. the 5’ UTR of human RUNX1 or B. intron 5-6 of 

human RUNX1.  C.  Summary Kd values of data from panels A and B.  D.  Oligos spanning the 

predicted hnRNP K binding sequence spanning intron 5-6 of mouse Runx1.    

 

Oligos derived from RUNX1 bind to and thermostabilize hnRNP K 

As an orthogonal method to evaluate binding of hnRNP K to RUNX1 oligos, we performed 

thermal shift assays.  In these experiments, recombinant full-length hnRNP K is incubated with 

SYPRO orange—a dye that becomes fluorescent upon binding hydrophobic amino acid residues.  



www.manaraa.com

  72 

As the reaction is heated and protein begins to unfold, these hydrophobic residues are exposed, 

and SYPRO orange binds.  By measuring SYPRO orange fluorescence over a gradient of 

temperatures, the melting temperature of a protein can be calculated.  An increase in the melting 

temperature of a protein, upon addition of any entity, such as a drug or a DNA oligo, indicates an 

interaction between the protein and that entity.225   

 When recombinant full-length hnRNP K was incubated with oligos derived from RUNX1—

either at the 5’ UTR or at intron 5-6, a significant increase in the melting temperature of hnRNP 

K was observed (Figure 29).  Critically, these increases were abrogated in the presence of 

mutated oligos, further suggesting that hnRNP K binds RUNX1 RNA in a sequence-specific 

manner.   

 

Figure 29. RUNX1 oligos thermostabilize hnRNP K.  Bar graph representing the melting 

temperature of hnRNP K upon interaction with increasing amounts of the indicated oligos derived 

from human RUNX1.  For each oligo, concentrations were 2.5µM and 5µM. 
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4.4 Discussion 

In Chapters 2 and 3, we determined that hnRNP K is overexpressed in AML, and is a 

bona fide oncogene when overexpressed in a mouse model.  In this chapter, we aimed to begin 

identifying a mechanism by which hnRNP K exerts its oncogenic activity—a formidable 

undertaking considering most descriptions of hnRNP K begin with a litany of its described biologic 

functions.226  We therefore conducted hnRNP K IP-MS to provide direction as to which of these 

biologic functions were most worthy of pursuit.  In line with published literature, hnRNP K 

interacted with a long list of proteins.227  However, the hnRNP K-interacting proteins we identified 

in the context of AML were predominantly RNA-binding proteins and ribosomal subunits—entities 

involved in post-transcriptional cellular processes.    

We began our evaluation of hnRNP K as an RNA-binding protein with fRIP-Seq.  In this 

study, we identified RUNX1 as one of the top hnRNP K-interacting transcripts.  This finding was 

particularly intriguing as RUNX1 is a critical transcription factor in both normal and malignant 

hematopoiesis.  Definitive hematopoiesis does not occur in Runx1 knockout mice, resulting in 

embryonic lethality, and heterozygous loss of Runx1 also results in aberrant hematopoiesis.85  In 

leukemias of various lineages, RUNX1 is frequently translocated104-106, mutated109, 116, 228, or 

aberrantly expressed.98, 229-231  Therefore, an interaction between hnRNP K and an entity so 

integrally involved in leukemogenesis was of great interest.  Of note, RUNX1 was not identified 

as an hnRNP K-interacting protein in our IP-MS data.  Rather, the interaction was found between 

hnRNP K protein and RUNX1 RNA. 

We identified two hnRNP K binding sites in RUNX1 (Figure 26).  To our knowledge, the 

5’ UTR site has not been described, though others recently reported hnRNP K binding at the 3’ 

UTR in vitro.232  An hnRNP K-Runx1 interaction has been described at the intron 5-6 junction 

during neuronal differentiation in rats.56  Indeed, this intron 5-6 sequence is largely conserved 

between species149, which is also supported by our studies that hnRNP K stringently binds the 

intron 5-6 junction in both human and mouse (Figures 28, 29).  Disruptions in poly(C) stretches 
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in the RUNX1 transcript dramatically reduce hnRNP K binding (Figures 28, 29).  Together, this 

is compelling evidence that hnRNP K interacts with RUNX1 RNA in a sequence-specific manner.   

hnRNP K is overexpressed in AML (Chapter 2), a disease which often has aberrancies 

in RUNX1.221 In this chapter, we presented compelling evidence that hnRNP K stringently and 

specifically interacts with RUNX1 RNA.  Hence, one mechanism of hnRNP K’s oncogenicity may 

stem from its ability to interact with RUNX1.  This hypothesis will be addressed in detail in Chapter 

5. 
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Chapter 5 

Evaluating the functional consequence of the hnRNP K-RUNX1 interaction 
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5.1 Introduction 

hnRNP K is a versatile protein with roles in copious biologic processes including 

chromatin remodeling44-47, signal transduction39-43, transcription48-54, RNA splicing55-59, mRNA 

stability60-62, and translation54, 63-69.  These functions are mediated in large part through its 

capacity to bind single-stranded nucleic acid, either DNA or RNA, via its KH domains.74, 226  In 

Chapter 4, we observed that hnRNP K stringently and specifically bound human and mouse 

RUNX1 RNA near an intron-exon boundary.  Therefore, in this chapter, we examined the 

possibility that hnRNP K has a role in regulating RUNX1 alternative splicing.  

Splicing is a requisite step for the maturation of almost all human mRNAs, where non-

coding introns are removed before translation occurs.121, 122  Further, a single pre-mRNA can give 

rise to numerous distinctive mature mRNAs via differential utilization of splice sites—thus 

including or excluding various exons—a process referred to as alternative splicing.125  Such a 

process therefore allows a single gene to encode for multiple protein products.  Indeed, 

alternative splicing is the major process underlying the disparity between the vast proteomic 

diversity in cells and a much more limited array of protein-coding genes.117-120   

Splicing occurs via processes involving macromolecular complexes referred to as the 

major and minor spliceosome.125-127  Small nuclear ribonucleoprotein complexes (snRNPs) U1, 

U2, U4, U5, and U6 comprise the major spliceosome.125  The minor spliceosome consists of U5, 

U11, U12, U4atac, and U6atac, which are functionally analogous to the components of the major 

spliceosome.126, 128  Sequence motifs at the 5’ splice site (5’ss; flanking the upstream exon and 

intron) and the 3’ splice site (3’ss; flanking the intron and downstream exon) are required for 

intron excision to occur.125  The 5’ss is recognized and bound by the U1 snRNP, while the U2 

snRNP recognizes and binds the 3’ss.125, 126  U2 auxiliary factors (U2AFs) also bind the 3’ss and 

facilitate binding of the U2 snRNP.  Next, the U4/U5/U6 tri-snRNP is recruited, and the fully 

assembled spliceosome splices the pre-mRNA via two sequential transesterification reactions.125   
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Splice sites can be considered constitutive or alternative, depending on whether they are 

always or only sometimes used, respectively.125, 142  In either case, the same spliceosomal 

machinery catalyzes the splicing reaction.  However, trans-acting splicing factors often mediate 

recruitment efficiency of the spliceosome to alternative splice sites.142  Such trans-acting factors 

are most often RNA-binding proteins that recognize sequence motifs that enhance/promote or 

silence/repress splicing.233, 234  The canonical splicing enhancers are the serine/arginine-rich 

proteins (SR proteins, such as SRSF2).142  In contrast, canonical splicing repressors are 

heterogeneous nuclear ribonucleoproteins (hnRNPs, such as hnRNP K).142, 235  However, context 

largely dictates whether a protein, even one from one of these canonical classes, will act as a 

repressor or enhancer of splicing.142   

Depending on where in a pre-mRNA a protein binds, as well as the capability of that 

protein to interact with other proteins, one protein may have differential splicing effects around a 

particular site.142  For example, hnRNP K binding to RUNX1 RNA near the 3’ss of intron 5-6 could 

lead to competition with normal binding of U2AFs and/or the U2 snRNP.  Indeed, in a rat cell line, 

hnRNP K competed with U2AF2 (also known as U2AF65) for binding to the poly(C) tract 

immediately upstream of 3’ splice sites of several genes.56  Depending, then, on the interaction 

between hnRNP K and the U2 snRNP, hnRNP K may act as a splicing repressor.   

The role of splicing in hematologic malignancies has become increasingly recognized.  

Mutations in splicing factors such as SF3B1, SRSF2, U2AF1, and ZRSR2 have been identified 

in numerous leukemias, including AML.32, 34, 236, 237  Intriguingly, altered splicing events can occur 

in AML even in the absence of mutations in splicing machinery.146  In one study of several tumor 

types, AML samples had the highest rate of alternative splicing events, even when only analyzing 

samples without splicing factor mutations.146  Furthermore, dysregulation of the alternative 

splicing process can give rise to protein isoforms with functions resulting in oncogenic insults—

even without concomitant genomic aberrations.147, 148  Thus, our understanding of these 

processes is imperative to reveal the underpinnings of leukemogenesis.   
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RUNX1 is a key transcription factor in normal and malignant hematopoiesis.85  In 

leukemias, RUNX1 is often mutated109, 116, 228, translocated104-106, or aberrantly expressed.98, 229-

231  Like the majority of protein-coding genes with more than one exon, RUNX1 is spliced.  Indeed, 

alternative splicing of RUNX1 results in an isoform lacking the C-terminus transactivation domain, 

known as RUNX1A.  Another alternatively spliced, less understood isoform of RUNX1, lacking 

an internal 64 amino acid residues (corresponding to exon 6), has been identified in mouse and 

human.88, 93, 149, 155  However, the mechanisms underlying the production and functional relevance 

of these isoforms have not been fully elucidated.    

hnRNP K has been shown to influence splicing of several genes, including RUNX1.56, 58, 

59, 149-151 However, it is unclear what influence, if any, hnRNP K overexpression has on splicing 

of RUNX1, particularly in the context of AML.  Additionally, the physiologic relevance of the 

hnRNP K-RUNX1 interaction has not been elucidated.  In this chapter, we therefore aimed to 

functionally characterize the interaction between hnRNP K and RUNX1.       
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5.2 Materials/Methods 

Viral production: HEK293T cells at 50% confluency in T75 flasks were transfected with 4 µg of 

transfer vector (see plasmids section) and 4 µg of packaging vector.  For virus used to infect 

FLCs, the packing vector used was pCL-Eco (Addgene plasmid #12371).183  For virus used to 

infect human cell lines, packaging was done with 4 µg of pCMV-dR8.2 (Addgene plasmid 

#8455)238, and 800 ng of pCMV-VSV-G (Addgene plasmid #8454)238.  This DNA was combined 

with 12 µL of JetPrime DNA transfection reagent (Polyplus Transfection, New York, NY, USA).  

Fresh medium was supplied after 6-8 hours (stem cell medium without cytokines for FLCs; 

DMEM with 10% tetracycline-free FBS for human cell lines), and cells were incubated at 32°C 

for 48-72 hours.  High-titer viral supernatant was collected and passed through a 0.45 µm filter.     

 

Fetal liver cell (FLC) isolation: The University of Texas MD Anderson Cancer Center Animal Care 

and Use Committee approved all mouse experiments performed in these studies under protocols 

0000787-RN01 and 0000787-RN02. Pregnant wildtype CD45.2+ C57/Bl6 females were 

euthanized by exposure to CO2 at day 13.5 of gestation.  Fetal livers were sterilely dissected and 

gently disrupted on a 70 µm filter to obtain a single-cell suspension.  The collected cells were 

briefly subjected to a red blood cell (RBC) lysis with BD Pharm Lyse buffer (BD Biosciences, San 

Jose, CA, USA).  After RBC lysis, cells were resuspended in stem cell medium at ~3x106 cells/mL 

and incubated at 37°C overnight prior to retroviral transduction. Stem cell medium contained 37% 

DMEM (Corning Inc, Corning, NY, USA), 37% Iscove’s modified Dulbecco’s Medium (Corning 

Inc, Corning, NY, USA), 20% fetal bovine serum, 2% L-glutamine (200mM; Corning Inc, Corning, 

NY, USA), 100 U/mL penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA), 5x10-5 M 2-

mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA), recombinant murine interleukin-3 (0.2 

ng/mL), interleukin-6 (2 ng/mL), and stem cell factor (20 ng/mL; all cytokines were obtained from 

Stem Cell Technologies, Vancouver, Canada).   
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FLC transduction and sorting: Approximately 5x106 FLCs were resuspended in 2 mL of high-titer 

retroviral supernatant supplemented with 12 µg/mL polybrene and fresh cytokines (IL-3, IL-6, 

and SCF).  Plates were then spun at 600xg for 90 minutes at room temperature and incubated 

at 32°C for 48-72 hours.  After transduction, cells with GFP were sorted for GFP positivity using 

the MoFlo Astrios cell sorter (Beckman Coulter, Brea, CA, USA) at the MD Anderson Cancer 

Center North Campus Flow Cytometry Core Facility.     

 

RNA-Sequencing: RNA was extracted and purified from cells using Zymo Quick-RNA columns 

as per manufacturer’s instructions (Zymo Research, Irvine, CA, USA).  Barcoded, Illumina 

stranded total RNA libraries were prepared using the TruSeq Stranded Total RNA Sample 

Preparation Kit (Illumina, San Diego, CA, USA). Briefly 250ng of DNase I treated total RNA was 

depleted of cytoplasmic and mitochondrial ribosomal RNA (rRNA) using Ribo-Zero Gold 

(Illumina, San Diego, CA, USA).  After purification, the RNA was fragmented using divalent 

cations and double stranded cDNA was synthesized using random primers.  The ends of the 

resulting double stranded cDNA fragments were repaired, 5′-phosphorylated, 3’-A tailed and 

Illumina-specific indexed adapters are were ligated.  The products were purified and enriched by 

12 cycles of PCR to create the final cDNA library.  The libraries were quantified by qPCR and 

assessed for size distribution using the 4200 TapeStation High Sensitivity D1000 ScreenTape 

(Agilent Technologies, Santa Clara, CA, USA) then multiplexed, 3 libraries per lane and 

sequenced on the Illumina HiSeq4000 sequencer (Illumina, San Diego, CA, USA) using the 75 

bp paired end format. 

 

RNA-Seq analysis: Fastq files were pseudoaligned using Kallisto v0.44.0239 with 30 

bootstrap samples to a transcriptome index based on the Mus musculus GRCm38 

release (Ensembl).  The resulting abundance data was further analyzed with Sleuth 

v0.30.0240 using models with covariates for both batch and condition.  Gene-level 
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abundance estimates were calculated as the sum of transcripts per million (TPM) 

estimates of all transcripts mapped to a given gene.  Wald tests were performed at a 

gene level for the “condition” covariate with a significance threshold of FDR < 10%. 

 

qRT-PCR: RNA was extracted and purified from cell lines using Zymo Quick-RNA columns as 

per manufacturer’s instructions (Zymo Research, Irvine, CA, USA).  Samples were subjected to 

in-column DNAse treatment as per manufacturer’s instructions.  Purified RNA was quantified 

using a NanoDrop spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA).  1µg of 

RNA was reverse transcribed using iScript (BioRad, Hercules, CA, USA).  qRT-PCR was 

performed using iTaq Univerval SYBR Green Supermix as per manufacturer instructions 

(BioRad, Hercules, CA, USA) using an ABI StepOnePlus Real Time PCR System.  Primers used 

are listed in Table 4.  Individual samples were assayed in triplicate.  Calculations were performed 

using the Pfaffl method comparing expression changes between target genes and housekeeping 

control.158 

 

Table 4. Primers used in PCR.  List of primers used in qRT-PCR and RT-PCR.  All sequences 

are listed from 5’ to 3’.    

Primer Sequence (5' to 3')
Human PPIA Forward CCCACCGTGTTCTTCGACATT
Human PPIA Reverse GGACCCGTATGCTTTAGGATGA
Human RPLP0 Forward CCTTCTCCTTTGGGCTGGTCATCCA 
Human RPLP0 Reverse CAGACACTGGCAACATTGCGGACAC 
Human RUNX1 Ex5 Reverse CCATCAAAATCACAGTGGAT
Human RUNX1 Ghanem forward GAAGTGGAAGAGGGAAAAGCTTCA
Human RUNX1 Ghanem reverse GCACGTCCAGGTGAAATGCG
Human RUNX1 Ex3 forward (for total RUNX1) CTGCTCCGTGCTGCCTAC
Human RUNX1 Ex4 reverse (for total RUNX1) AGCCATCACAGTGACCAGAGT
Mouse Runx1 Ghanem Forward CACTCTGACCATCACCGTCTT
Mouse Runx1 Ghanem Reverse GGATCCCAGGTACTGGTAGGA
Mouse Runx1 Ghanem Total Forward TGGGATCCATCACCTCTTCCT
Mouse Runx1 Ghanem Total reverse ACGGCAGAGTAGGGAACTGG
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RT-PCR for splicing analysis: One µg of RNA was converted to cDNA using iScript (BioRad, 

Hercules, CA, USA) as per manufacturer’s instructions.  PCR reactions were performed using 

Apex buffer, 1.5mM MgCl2, 0.2mM of each dNTP, 0.5 units Taq polymerase, 0.5µM forward 

primer, 0.5µM reverse primer, and 100ng cDNA.  Primers used are included in Table 4.  PCR 

was run on a BioRad Thermocycler at 95°C x 3 minutes, followed by 35 cycles of 95°C for 1 

minute, 60°C for 1 minute, and 72°C for 3 minutes, and finally 72°C for 5 minutes.  After 

amplification, equal amounts of PCR products were run on a 2% agarose gel with ethidium 

bromide at 180V x 30 minutes, then visualized using a Syngene G:Box EF2 gel doc system with 

GENESys image capture software.   

 

Sanger sequencing: DNA was purified from agarose gels using a gel purification kit (Invitrogen, 

Carlsbad, CA, USA) as per manufacturer’s instructions.  200ng of purified DNA and 1pmol of 

each primer used in the PCR reaction were provided to the MDACC Sequencing and Microarray 

Core Facility.  Sequencing was performed on an ABI 3730XL sequencer using BigDye terminator 

cycle sequencing chemistry with the forward primer used in the RT-PCR reaction.  For validation, 

another sequencing run was performed with the reverse primer used in the RT-PCR reaction.  

Data analysis was provided as text files and chromatograms.   

 

Plasmids and cloning: 

hnRNP K mammalian cell expression plasmids: Full-length human hnRNP K cDNA was PCR 

amplified using cDNA isolated from 293T cells as a template.  The PCR product was 

subsequently digested with restriction enzymes XhoI and EcoRI and ligated into the 

corresponding sites in the pcDNA c-flag vector (Addgene plasmid #20011).241  hnRNP K domain 

deletions were amplified using the nested PCR technique242, and subsequently ligated into the 
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XhoI/EcoRI restriction enzyme sites in the pcDNA c-flag vector.  All of the above plasmids had 

an in-frame C-terminal flag tag to verify expression and for downstream applications.  

 

hnRNP K viral expression plasmids: Full-length hnRNP K and its domain deletions were amplified 

using standard PCR techniques from the pcDNA c-flag plasmids, described above.  These were 

then cloned into the XhoI/NotI sites in the all-in-one tetracycline inducible lentiviral vector TRE3G-

ORF-P2A-eGFP-PGK-Tet3G-bsd (TLO2026, transOMIC Technologies, Alabama, USA).  All of 

the viral plasmids had an in-frame C-terminal flag tag, and a P2A linker followed by eGFP. The 

viral selection marker in the plasmid was blasticidin.  These viral plasmids were used to generate 

the tetracycline-inducible stable cell lines for overexpression of hnRNP K.  

For fetal liver cell infection, retroviruses were made in an MSCV backbone and were 

modified from those described previously.180  MSCV-AML1/ETO-IRES-GFP plasmid was 

obtained from Addgene (plasmid #60832).180  The green fluorescent protein (GFP) coding 

sequence was replaced with firefly luciferase ORF obtained from a luciferase-pcDNA plasmid 

(Addgene plasmid #18964).182  For generation of empty vectors, AML1/ETO was excised using 

EcoRI and BamH1 and plasmid re-ligated.  To generate MSCV-HNRNPK-IRES-GFP and MSCV-

HNRNPK-IRES-Luciferase, AML1/ETO was replaced with HNRNPK that was PCR amplified 

from HEK 293T cells.   

 

RUNX1 mammalian expression plasmids: Full-length human RUNX1(b) cDNA was PCR 

amplified using a RUNX1 expression plasmid as a template. The PCR product was subsequently 

digested with restriction enzymes XhoI and EcoRI and ligated into the corresponding sites in the 

pcDNA c-flag vector (Addgene plasmid #20011).241  RUNX1ΔEx6 was amplified using the nested 

PCR technique and subsequently ligated into the XhoI/EcoRI restriction enzyme sites in the 

pcDNA c-flag vector.  Both plasmids had an in-frame C-terminal flag tag to verify expression and 

for downstream applications.  
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RUNX1 viral expression plasmids: Full-length RUNX1(b) and RUNX1ΔEx6 were amplified using 

standard PCR techniques from the pcDNA c-flag plasmids, described above.  These were then 

cloned into the XhoI/NotI sites in the all-in-one tetracycline inducible lentiviral vector TRE3G-

ORF-P2A-eGFP-PGK-Tet3G-bsd (TLO2026, transOMIC Technologies, Alabama, USA).  All of 

the viral plasmids had an in-frame C-terminal flag tag, a P2A linker followed by eGFP.  The viral 

selection marker in the plasmid was blasticidin.  These viral plasmids were used to make 

tetracycline-inducible stable cell lines for RUNX1 overexpression.   

 For infecting fetal liver cells, full-length RUNX1(b) and RUNX1ΔEx6 were subcloned from 

the pcDNA c-flag plasmids into the MSCV-IRES-GFP vector (Addgene plasmid #20672). 

 

RUNX1 luciferase reporter: An artificial oligo containing 13 consensus RUNX1 DNA binding sites 

(TGTGG) flanked by HindIII restriction enzyme sites, and its corresponding reverse complement 

pair, were synthesized.  The two oligos were annealed and placed into HindIII sites in the PG13-

Luc vector (Addgene plasmid #16442).243  p53 binding sites from the PG13-Luc plasmid were 

excised out during the HindIII digestion.  The resulting RUNX1 reporter was referred to as RBG-

Luc.    

 

All plasmids were verified by sequencing.  The primers used for cloning are listed in Table 5.   
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Table 5. Primers used for cloning. List of primers used for cloning plasmids.  All sequences 

are listed from 5’ to 3’. 

 

shRNAs: For knockdown of HNRNPK, SMARTvector inducible human HNRNPK PGK-TurboRFP 

shRNAs were purchased from Dharmacon (Lafayette, CO, USA).  Three plasmids were used 

and referred to as shHNRNPK ex10 (clone ID: V3IHSPGR_10844995, mature antisense 

TCGACGAGGGCTCATATCA, targeting exon 10), and two targeting the 3’ UTR, referred to as 

shHNRNPK ex16-1 (clone ID: V3IHSPGR_5114248, mature antisense 

AAGACACTAGAGCAAATTG) and shHNRNPK ex16-2 (clone ID: V3IHSPGR_9103684, mature 

antisense ATAAAATCCACTCACTCTG).  A non-targeting PGK-TurboRFP (VSC11656, mature 

antisense TGGTTTACATGTTGTGTGA; Dharmacon, Lafayette, CO, USA) control was utilized 

within each experiment as an internal control.   Puromycin was used as the viral selection marker.   

 

Primer name Sequence (5' to 3')
hnRNPK_FL_F ATGCCTCGAGATAAAAGAATATGGAAACTGAACAGCCAGAAGAAAC
hnRNPK_FL_R ATGCGAATTCTTACTTGTCATCGTCGTCCTTGTAGTCGAAAAACTTTCCAGAATACTGCTTCACACT
hnRNPK_dKH1_R CTTCAGAATTTCTAATTCAACCATCTCATCAGTGTTTCTAGATCT 
hnRNPK_dKH1_F ATGGTTGAATTAGAAATTCTGAAGAAAATCATCCCTACCTTG
hnRNPK_dKH2_R CCTATCGGGTTTCCTCAACTCGCAGTCAAAGTCACT
hnRNPK_dKH2_F TGCGAGTTGAGGAAACCCGATAGGGTTGTAGAGTGC
hnRNPK_dKI_R AGCACTGAAACCAAAACCACCATAATCATAGGTTTCATCGTA
hnRNPK_dKI_F TATGGTGGTTTTGGTTTCAGTGCTGATGAAACTTGG
hnRNPK_dKH3_R CTGGTCCTGTGTTGTAGTAATAATAGGTCCACCAAGATCACCATA
hnRNPK_dKH3_F ATTATTACTACAACACAGGACCAGATACAGAATGCA
hnRNPK_dNLS_R CTCATCAGTGTTACCAAATTCACCATTGGTTTCAGTG
hnRNPK_dNLS_F GGTGAATTTGGTAACACTGATGAGATGGTTGAATTACGC
hnRNPK_dKNS_R ACCCTGTGGTTCAACCATGCCGTCGTAACGGT
hnRNPK_dKNS_F GACGGCATGGTTGAACCACAGGGTGGCTCC
RBFLuc_F AGCTTTGTGGTTTGTGGTTTGTGGTTTGTGGTTTGTGGTTTGTGGTTTGTGGTT TGTGGTTTGTGGTTTGTGGTTTGTGGTTTGTGGTTTGTGGTTA
RBFLuc_R AGCTTAACCACAAACCACAAACCACAAACCACAAACCACAAACCACAAACCACAAACCACAAACCACAAACCACAAACCACAAACCACAAACCACAA
RUNXFL_F (pcDNA) ATGCCTCGAGATGCGTATCCCCGTAGATGCCAGCAC
RUNXFL_R (pcDNA) ATGCGAATTCTTACTTGTCATCGTCGTCCTTGTAGTCGTAGGGCCTCCACACGGCCTC
RUNXdelEx6_F GAGAACCTCGAAATACAAGGCAGATCCAACCATCCCCACC
RUNXdelEx6_R TCTGCCTTGTATTTCGAGGTTCTCGGGGCCCATCC
RUNXFL_F (transomic) ATGCCTCGAGGCCGCCACCATGCGTATCCCCGTAGATGCCAGCAC
RUNXFL_R (transomic) ATGCGCGGCCGCTCTTGTCATCGTCGTCCTTGTAGTCGTAGGGCCTCCACACGGCCTC
SIN3A_F ATGCCTCGAGGCCGCCACCATGAAGCGGCGTTTGGATGACC
SIN3A_R ATGCGGTACCTTACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCAGGGGCTTTGAATACTGTGCCGTATTTG
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Transient transfections: 293T cells were plated at identical confluencies and transfected using 

equal amounts of DNA with JetPrime reagents as per manufacturer’s instructions (Polyplus 

Transfection, New York, USA).  All transfections were for 48 hours unless otherwise noted. 

 

Generation of stable cell lines: Virus was produced as described above.  Approximately 0.5x106 

cells were resuspended in 2 mL of high-titer viral supernatant supplemented with 12 µg/mL 

polybrene.  Plates were then spun at 600xg for 90 minutes at room temperature and incubated 

at 32°C for 72 hours.  After 72 hours, cells were spun down, viral supernatant removed, and cells 

were resuspended in RPMI 1640 with 10% tetracycline-free FBS.  Appropriate selection 

antibiotics were added to media (2-6µg/mL of blasticidin or 1-2 µg/mL of puromycin) and cells 

were placed at 37°C.  When cells began to grow through antibiotic selection (3-15 days), an 

aliquot of cells was induced with doxycycline (0.2µg/mL for knockdown cell lines or 0.4µg/mL for 

overexpression cell lines) for 24-72 hours before evaluation of appropriate fluorescent protein 

expression by fluorescence microscopy was performed.  If the appropriate fluorescent protein 

expression (GFP and/or RFP) was observed in >90% of cells in response to doxycycline, cells 

were utilized in downstream experiments.  All cells were maintained in constant antibiotic 

selection and kept in stringently tetracycline-free conditions to avoid unintended gene induction.  

Prior to cell harvest for each experiment, GFP and/or RFP expression were visualized by 

fluorescence microscopy, and downstream assays only conducted if >90% of cells were 

appropriately positive.   

 

Western blotting: Cells were homogenized in NP40 lysis buffer containing protease and 

phosphatase inhibitors (Millipore Sigma, Burlington, MA, USA).  Soluble proteins were boiled in 

Laemmli buffer, resolved on an SDS-PAGE gel, and transferred to a PVDF membrane.  

Membranes were blocked with 5% milk for one hour at room temperature and incubated with 

primary antibody at 4°C overnight while rocking.  Primary antibodies were hnRNP K (3C2, 
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1:1000, Abcam, Cambridge, MA, USA), RUNX1 (EPR3099, 1:1000, ab92336, Abcam, 

Cambridge, MA, USA), b-actin (AC-15, 1:2000, Santa Cruz Biotechnology, Dallas, TX, USA).  

Membranes were incubated with secondary antibody and antibody-protein interactions were 

visualized using enhanced chemiluminescence (GE Healthcare, Chicago, IL, USA) or BCIP/NBT 

color development substrate (VWR International, Radnor, PA, USA).   

  

Luciferase assay: 293T cells were transiently transfected with luciferase-based reporter plasmids 

and expression plasmids using jetPRIME (Polyplus, New York, NY, USA).  Human V5-tagged 

SIN3A pLX304 plasmid was purchased from Arizona State University Plasmid repository (clone 

HsCD00445676; Tempe, AZ, USA).  Total DNA quantity was constant across all wells.  48 hours 

post-transfection, luciferase assay reagent was mixed in a 1:1 ratio with cell lysate in accordance 

with manufacturer’s protocol (Luciferase Assay System kit, Promega, Madison, WI, USA;).  

Luciferase activity was measured with Synergy H4 Hybrid Reader (BioTek, Winooski, VT, USA).  

Transfection efficiency for each well was normalized using 62.5ng of a pCMV b-galactosidase 

plasmid, which was co-expressed in each experiment.  All experiments were performed in at 

least triplicate.   

Protein stability assays: 293T cells stably transduced with tetracycline-inducible constructs to 

overexpress RUNX1, either full-length or lacking exon 6.  400ng/mL doxycycline was added to 

cells prior to the addition of cycloheximide (10 µM, Sigma-Aldrich, St. Louis, MO, USA) with or 

without MG-132 (10 µM, SelleckChem, Houston, TX, USA) were then added to cells for 1-8 

hours.  Cells were collected and lysed in NP40 lysis buffer with protease and phosphatase 

inhibitors prior to western blot.  

 

Colony formation assay: GFP sorted FLCs were cultured in quadruplicate wells of a 12-well plate 

in methylcellulose medium with cytokines IL-3, IL-6, erythropoietin, and stem cell factor 

(Methocult GF M3434, StemCell Technologies, Vancouver, Canada).  50,000 cells were plated 
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per well and colonies were counted after 7 days.  Colonies were gently disrupted in PBS and 

cells counted manually with a hematocytometer using trypan blue dye exclusion, or subjected to 

cytospin or flow cytometry.  Cytospins were stained with Wright-Giemsa.   

 

Polysome fractionation assay: This assay was performed using a previously described 

protocol.244  293T cells were transfected with a non-targeting control (siScramble; 5’- 

UAAGGCUAUGAAGAGAUAC-3’) or a pool of siHNRNPK (5’-3’:  

GAGCGCAUAUUGAGUAUCA, GAUCUUGGUGGACCUAUUA, 

GGUCAGCGGAUUAAACAAA, GUCGGGAGCUUCGAUCAAA) 

 (Dharmacon, Lafayette, CO, USA) using JetPrime (Polyplus, New York, NY, USA) as per 

manufacturer’s instructions.  24 hours after transfection, cells were split and harvested 72 hours 

later.  10 minutes prior to harvest, 100mg/mL cycloheximide was added.  Cells were collected 

using trypsin, pelleted, and washed with cold PBS supplemented with cycloheximide.  Lysis was 

performed with polysome extraction buffer (20mM Tris-HCl pH 7.5, 100mM KCl, 5mM MgCl2, 

and 0.5% Nonidet P-40) with added cycloheximide, protease inhibitors, and RNA inhibitors.  

Lysate was centrifuged to clear insoluble material, then loaded onto a 0-50% sucrose gradient 

and spun in an ultracentrifuge at 35000 rpm at 4°C for 3.75 hours.  The gradient was then 

fractionated into 28 fractions with a piston gradient fractionator (BioComp, Fredericton, NB, 

Canada).  Polysome profiles were created using absorbance readings at 260nm and aligned by 

manually identifying peaks, and scaling positions with linear transformation.  The minimum 

absorbance value from each sample was subtracted out in order to account for background 

absorbance.  RNA from each fraction was isolated using Trizol, reverse transcribed, and utilized 

for downstream qPCR analysis as described above.  Further details are available elsewhere.83  
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5.3 Results 

hnRNP K globally affects splicing  

Given the stringent binding of hnRNP K to RNA, and the increasing emphasis on aberrant 

RNA splicing in myeloid malignancies, we sought to evaluate whether hnRNP K could influence 

splicing patterns.  To this end, we performed RNA-Seq on FLCs overexpressing hnRNP K 

compared to empty vector controls.  In addition to notable gene expression differences between 

groups (Figure 30), hnRNP K influenced splicing of numerous transcripts (Figure 31).   

 

Figure 30. Hnrnpk overexpression results in differential gene expression in murine FLCs.  

Heatmap of the most differentially expressed genes in FLCs overexpressing hnRNP K (left) 

compared to empty vector controls (right).  Each column represents a biologic replicate.  

 

Hnrnpk OE Empty vector
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Figure 31. Hnrnpk overexpression alters splicing in FLCs.  Plot of differentially spliced 

transcripts in Hnrnpk overexpressing FLCs compared with empty vector controls.  Orange dots 

represent transcripts that were differentially spliced in a statistically significant manner.  Blue dot 

indicates Runx1.  

 

hnRNP K alters splicing of Runx1  

One of the most compelling differentially spliced transcripts from our RNA-Seq data was 

Runx1 (Figure 31).  Since the Runx1 transcript has an hnRNP K binding site at the junction of 

intron 5 and exon 6, near the 3’ splice site (Figures 26, 28, 29), we checked for Runx1 splice 

variants with alterations in exon 6. Samples overexpressing hnRNP K had a statistically 

significant increase in the amount of Runx1 exon 6 skipping compared to empty vector controls 

(Figures 32A, B).  We refer to this isoform as Runx1DEx6.  While both isoforms of Runx1 were 

present in all samples, Runx1DEx6 was more abundant in samples overexpressing Hnrnpk.  

Therefore, we sought to more specifically evaluate the impact of hnRNP K in this area.  To 

validate these RNA-Seq findings, we performed Runx1 RT-PCR with primers spanning exons 5-

Runx1

p-value rank
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7.  In FLCs that were infected with Hnrnpk overexpressing virus, a PCR product corresponding 

to the predicted size of Runx1DEx6 was dramatically enriched compared to controls (Figure 

32C).   

 

Figure 32. Runx1 is differentially spliced in hnRNP K overexpressing FLCs.  A.  Sashimi 

plot of Runx1 exons 5-7 from a representative empty vector sample (top) and an Hnrnpk 

overexpressing sample (bottom).  Y-axis shows the number of reads.  Numbers above lines 

between exons represent the number of reads spanning those exon junctions.  B.  Data from four 

empty vector samples and four Hnrnpk overexpressing samples represented as a fraction of total 

Runx1 reads. C.  Runx1 RT-PCR from FLCs infected with empty vector or Hnrnpk .  As an 

additional control, FLCs exposed to Hnrnpk OE virus but that were not infected (GFP neg) were 

included.  GFP+ indicates FLCs that successfully integrated the Hnrnpk construct and were 

FACS sorted for GFP positivity.  Empty vector controls were also sorted for GFP positivity.  

Gapdh is shown as a loading control.  
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Exclusion of RUNX1 exon 6 occurs in an hnRNP K-dependent manner 

Given that exclusion of exon 6 (appearance of Runx1DEx6) occurred in FLCs in an 

hnRNP K-dependent manner, and since the hnRNP K binding site in intron 5-6 is largely 

conserved between mouse and human, we hypothesized that RUNX1 splicing surrounding exon 

6 would be similarly affected in human cells.  To this end, we generated several human AML cell 

lines with doxycycline-inducible hnRNP K overexpression (Figure 33A).  We then utilized PCR 

primers to amplify RUNX1 with a forward primer in exon 5, and a reverse primer in exon 7 (Figure 

33B).149  With this strategy, we were able to distinguish clear alterations in RUNX1 splicing 

patterns surrounding this exon that were dependent on hnRNP K expression levels (Figure 33C).  

This is consistent with the findings from our RNA sequencing of murine fetal liver cells, where 

hnRNP K overexpression leads to an enrichment of Runx1DEx6 (Figure 32).    

To confirm that the smaller band (160bp) visualized in RT-PCR was indeed the expected 

product lacking exon 6, we performed Sanger sequencing on the PCR products.  From these 

results, it was evident that the larger band in these gels included exon 6, whereas the smaller 

band completely lacked exon 6, leaving a clean junction between exons 5 and 7 (Figure 33D-H).  

Therefore, cells overexpressing hnRNP K have an increase in RUNX1DEx6.   
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Figure 33. hnRNP K overexpression leads to exclusion of RUNX1 exon 6.  A.  Western blot 

of stable human AML cell lines with tetracycline-inducible empty vector control (ctrl) or hnRNP K 

overexpression (hnK OE).  Cells were treated with doxycycline for 24 hours prior to harvest.  B.  

PCR strategy for RUNX1 amplification.  C.  RT-PCR from the indicated human AML cell lines 

treated with doxycycline for 24 hours to overexpress an empty vector (Ctrl) or hnRNP K (hnK 

OE).  PPIA serves as a loading control.  D.  RUNX1 RT-PCR from 293T cells.  Ladder with 

associated number of base pairs (bp) is clearly labeled.  E.  Sanger sequencing of 352 bp band 

from gel in panel A.  Double lines are placed in lieu of the entirety of exon 6 sequencing results.  

F. Schematic of the exons present in the PCR product containing exons 5-7, herein referred to 
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as RUNX1 FL (full length).  Arrows indicate the location of RT-PCR primers.  G.  Sanger 

sequencing of 160 bp band from gel in panel A.  H. Schematic of the exons present in the PCR 

product lacking exon 6.  Arrows indicate the location of RT-PCR primers. 

 

hnRNP K knockdown favors inclusion of RUNX1 exon 6 

In both human and mouse, hnRNP K overexpression led to an accumulation of 

RUNX1DEx6 (Figures 32, 33).  To further assess to the functional relationship between RUNX1 

splicing and hnRNP K expression, we performed a series of knockdown and rescue experiments 

in human cell lines.  In K562s, three shHNRNPK constructs were used to create stable 

tetracycline-inducible lines.  Indeed, knockdown of hnRNP K was evident at the RNA and protein 

level 24-hours after doxycycline induction (Figures 34A, B).  Importantly, RT-PCR revealed a 

decrease in RUNX1DEx6 in the context of hnRNP K knockdown (Figure 34C).  A concomitant 

increase in full length RUNX1 was also evident.  This is consistent with recently published data 

in this cell line.149 
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Figure 34. Knockdown of hnRNP K in K562 increases RUNX1 exon 6 inclusion.  A.  

HNRNPK qRT-PCR in K562 stably infected with the indicated constructs treated with doxycycline 

for 24 hours.  Ex10 construct targets HNRNPK in exon 10, while ex16-1 and ex16-2 constructs 

target the 3’ UTR of HNRNPK.  B.  Western blot of the cell lines used in A induced with 

doxycycline for 24 hours.  C.  RUNX1 RT-PCR of the same cell lines.  PPIA is used as a loading 

control.   

 

Add-back of hnRNP K to an shHNRNPK cell line rescues RUNX1 splicing alterations 

Since the shHNRNPK Ex16-2 construct induced significant knockdown by targeting the 

3’ UTR, we used this line to create another stable cell line with exogenous hnRNP K lacking this 

targeted region.  Therefore, we could use these cells as a tool to ‘rescue’ phenotypes associated 

with a decrease in hnRNP K expression.  As expected, in K562 cells, this resulted in hnRNP K 
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protein expression that approximated that of wildtype controls (Figure 35A).  Remarkably, 

RUNX1 RT-PCR in cells with rescued hnRNP K expression also mimicked wildtype (Figure 35B).  

This finding was echoed in OCIAML3 cells (Figure 35C).  These findings indicate that alterations 

in hnRNP K expression are sufficient to alter splicing of RUNX1 exon 6.   

 

Figure 35. Addback of hnRNP K to shHNRNPK cells rescues RUNX1 splicing.  A.  Western 

blot of K562 cells infected with empty vector (EV), hnRNP K overexpression (hnK OE), or either 

of those in addition to shHNRNPK ex16-2.  Cells were treated with doxycycline for 24 hours prior 

to harvest.  B.  RUNX1 RT-PCR in K562 cells.  C.  RUNX1 RT-PCR in OCIAML3 cells.  Samples 

are ordered from lowest to highest hnRNP K expression, indicated by the black triangle.   
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RUNX1DEx6 is translated 

Since the known function of RUNX1 is as transcription factor, we sought to evaluate 

whether RUNX1DEx6 had a corresponding protein product with similar function.  To assess 

whether RUNX1DEx6 was translated, we performed western blots of cell lines overexpressing 

hnRNP K.  These revealed the presence of a smaller protein product (Figures 36A, B).  

Compared to empty vector controls, this smaller protein product (~45 kDa), was more abundant 

in cell lines overexpressing hnRNP K.  Since the RUNX1DEx6 isoform is 192bp (encoding 64 

amino acids), shorter than the full-length form (Figure 33), this size difference lends credence to 

the conclusion that this smaller protein product is RUNX1DEx6.  Strikingly, in cells with decreased 

hnRNP K, this isoform was undetectable (Figure 36C).   

 

Figure 36. A smaller RUNX1 isoform corresponds with hnRNP K expression at the protein 

level.  Western blots of A.  K562 or B. OCIAML3 cells stably infected with empty vector (EV) or 

hnRNP K overexpression (hnK OE) treated with doxycycline for 24 hours.  C.  Western blot of 

OCIAML3 cells stably infected with shCtrl or shHNRNPK ex10 and treated with doxycycline for 

24 hours.  Red arrows indicate the smaller isoform of RUNX1 that appears at ~45 kDa.   
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RUNX1DEx6 is present in AML patient samples 

In Chapter 2, we identified that hnRNP K is overexpressed in AML.  Given the data in this 

chapter that overexpression of hnRNP K leads to an increase in RUNX1DEx6, we examined AML 

patient samples for the presence of this isoform.  While full-length RUNX1 was abundant in 

healthy bone marrow and peripheral blood samples, expression of this isoform was drastically 

reduced in nearly every case of AML (Figure 37).  Instead, RUNX1DEx6 was the dominant 

isoform expressed.  This is a crucial finding, as the association of RUNX1DEx6 with AML 

supports the clinical relevance of this entity.      

 

Figure 37. RUNX1ΔEx6 is present in AML patient samples.  RUNX1 RT-PCR from bone 

marrow (left) and peripheral blood (right) of healthy human control donors or AML patient 

samples.  PPIA is used as a loading control.  

 

Runx1DEx6 is present in mice transplanted with hnRNP K-overexpressing FLCs 

Thus far, our data have shown that hnRNP K overexpression leads to an enrichment of 

Runx1DEx6 in murine FLCs (RNA-Seq and RT-PCR; Figures 32, 33) and RUNX1DEx6 in human 

AML cell lines (RT-PCR, western blot; Figures 34, 36).  In addition, patients with AML also 
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express RUNX1DEx6 (RT-PCR; Figure 37).  To further evaluate how hnRNP K overexpression 

influences this splicing in vivo, we evaluated Runx1 expression in the mouse model described in 

Chapter 3.  In spleen and bone marrow of mice transplanted with FLCs overexpressing hnRNP 

K, there was a substantial enrichment of Runx1DEx6 at the expense of full-length Runx1 (Figure 

38A).  At the protein level, before transplantation (Figure 38B) and in the spleen after 

transplantation (Figure 38C), higher protein expression of Runx1DEx6 was evident.  As expected, 

these findings corresponded nicely with hnRNP K overexpression.   

 

Figure 38. FLCs overexpressing hnRNP K have more Runx1ΔEx6.  A. Runx1 RT-PCR from 

spleen (left) or bone marrow (right) of mice transplanted with empty vector control FLCs or 

hnRNP K-overexpressing FLCs.  B-C. Western blots of FLCs pre-transplant (B) or from spleen 
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of representative mice (C) transplanted with FLCs overexpressing empty vector or hnRNP K.  

Red arrow denotes Runx1DEx6.   

 

RUNX1DEx6 is more stable than full-length RUNX1  

To begin evaluating the functional consequences of RUNX1DEx6, we compared the 

stability of this protein isoform to that of full-length RUNX1.  Adding cycloheximide to eukaryotic 

cells impairs ribosomal translocation, thereby inhibiting cytosolic translation.245, 246  Since de novo 

protein synthesis is dramatically hindered in the presence of cycloheximide, western blotting can 

be used to visualize protein degradation over time.  Proteins that degrade more quickly (decrease 

in intensity on western blot) are said to be less stable than proteins that maintain expression for 

longer periods of time in the presence of cycloheximide.247  Cycloheximide chase assays showed 

that RUNX1DEx6 was substantially more stable than its full length counterpart (Figure 39A).  

Consistent with this observation, addition of MG132, an inhibitor of proteasomal degradation, 

stabilized full-length RUNX1, but had no effect on RUNX1DEx6 (Figure 39B), indicating that the 

proteasomal pathway is responsible for degradation of full-length RUNX1.  While RUNX1DEx6 

is present in relatively low quantities in cells, its long half-life may allow for biologic consequences 

despite low expression.  These data are consistent with reports that exon 6 contains 

ubiquitination sites that target RUNX1 for proteasomal degradation.248 
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Figure 39. RUNX1DEx6 is more stable than full-length RUNX1.  Western blot of 293T cells 

with stably integrated tetracycline-inducible RUNX1 (full-length or DEx6) were treated with 

doxycycline for 24 hours prior to addition of A. cycloheximide (CHX) or B. CHX and MG-132 for 

up to 8 hours.  HSP90 is used as a loading control.  Molecular weight ladder is marked in black 

marker in panel B.   

 

RUNX1DEx6 has differential transcriptional activity compared to full length RUNX1 

The predominantly known function of RUNX1 is as a transcription factor.  To further 

investigate whether RUNX1DEx6 has biologic function, we examined its transcriptional 

capabilities using luciferase reporter assays with an artificial RUNX1 reporter containing 13 

consensus RUNX1 binding sites.  We observed that cells transfected with full-length RUNX1 

dramatically repressed luciferase activity; however, cells with RUNX1DEx6 had diminished 
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capability to repress luciferase activity (Figure 40B).  Addition of SIN3A, a transcriptional co-

repressor that binds RUNX1 within a region encoded by exon 6, also demonstrated differential 

impact on full-length RUNX1 compared to RUNX1DEx6 (Figure 40C).  This suggests that the 

lack of exon 6 interferes with the ability of SIN3A to interact with RUNX1, and supports the notion 

that RUNX1DEx6 has altered transcriptional activity compared to full-length RUNX1. 

   

 

Figure 40. Full-length RUNX1 and RUNX1DEx6 have differential transcriptional activity.  A. 

RUNX1 RT-PCR in 293T cells transfected with RUNX1 full length (FL) or DEx6 overexpression 

plasmids B. Luciferase assays performed in 293T cells transfected with luciferase reporter 

construct and empty vector (Ctrl) or increasing concentrations of full length RUNX1 or 

RUNX1DEx6.  RUNX1 concentrations range from 0.0625µg to 0.5µg.   C.  Luciferase assays 

performed in 293T cells transfected with luciferase reporter construct and empty vector (Ctrl) and 

0.0625µg of RUNX1 with or without exon 6 as well as 0.5µg of SIN3A.    
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The KH3 domain of hnRNP K mediates RUNX1 splicing 

The previous data suggest that RUNX1DEx6 has different biologic function than its full-

length counterpart.  Since the presence of RUNX1DEx6 is hnRNP K-dependent, we sought to 

examine whether a particular domain of hnRNP K was responsible for this splicing.  To this end, 

we transfected 293T cells with constructs lacking sequential domains of HNRNPK.  When 

RUNX1 splicing was evaluated in these lines, cells overexpressing any form of HNRNPK had a 

near complete elimination of the full-length RUNX1 in favor of RUNX1DEx6, except those lacking 

the KNS or KH3 domain (Figure 41A).  In these cells transfected with HNRNPKDKNS or 

HNRNPKDKH3, splicing of RUNX1 was nearly identical to cells transfected with an empty vector 

control.   

To evaluate this phenomenon in another cell line, we made K562 cells stably transduced 

with tetracycline-inducible overexpression of hnRNP K with deletions of the KH1, KH2, KI, or 

KH3 domain.  When overexpressing these constructs, only those lacking KH3 showed a 

reversion to splicing like that of the empty vector control (Figure 41B).  The data from these two 

cell lines thus strongly suggest that KH3 is the domain of hnRNP K that mediates inclusion of 

RUNX1 exon 6.   

 

Figure 41. KH3 domain of hnRNP K mediates RUNX1 exon 6 splicing. RT-PCR of RUNX1 

from A. 293T cells transfected for 24 hours with the indicated flag-tagged hnRNP K constructs 



www.manaraa.com

  104 

or B. K562 cells with tetracycline-inducible expression of the indicated hnRNP K constructs.  

K562 cells were treated with doxycycline for 24 hours before RNA was harvested.  Deletion 

constructs are arranged in the order in which the functional domains occur within hnRNP K from 

amino to carboxy terminus of hnRNP K.  EV: empty vector control. PPIA is used as a loading 

control. 

 

The KH3 domain of hnRNP K is required for hnRNP K-overexpressing phenotypes in vitro 

Since it appears that the KH3 domain of hnRNP K is largely responsible for mediating 

RUNX1 splicing, we wanted to evaluate whether this domain contributed to the ability of hnRNP 

K-overexpressing FLCs to form colonies in vitro.  Compared to those overexpressing full-length 

hnRNP K, FLCs overexpressing hnRNP K without KH3 had substantially decreased colony 

formation (Figure 42).  Strikingly, cells with hnRNP KDKH3 formed even fewer colonies in vitro 

than empty vector controls.  Together, these data indicate that hnRNP K-mediated increase in 

Runx1DEx6 is critical to the in vitro phenotypes associated with hnRNP K overexpression.   

 

Figure 42. The KH3 domain of hnRNP K is required for an in vitro phenotype associated 

with hnRNP K overexpression.  Bar graph of the number of hematopoietic colonies formed per 

well from FLCs stably transduced with empty vector (black), full-length hnRNP K (red), or hnRNP 

K lacking the KH3 domain (blue).  Cells were sorted for GFP expression to ensure stable 
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integration of the viral construct.  Note: This figure includes empty vector and hnRNP K OE data 

points that were included in figure 12.   

 

hnRNP K influences RUNX1 and global translation 

In addition to the increase in RUNX1DEx6 observed with hnRNP K overexpression, it was 

evident that total RUNX1 protein expression also increased in this setting (Figures 36, 38).  Given 

the binding of hnRNP K to the 5’ UTR of RUNX1 identified in Chapter 4 (Figures 26, 28, 29), and 

the interaction between hnRNP K and ribosomal subunits identified in Chapter 4 (Figure 23), we 

sought to evaluate whether hnRNP K influenced translation of RUNX1.  The notion that hnRNP 

K regulates RUNX1 expression at a post-transcriptional/translational level is supported by the 

observation that total RUNX1 RNA is not increased in hnRNP K-overexpressing cells (Figure 

43A).   

To more directly address this question, we performed polysome fractionation assays.  In 

these experiments, ribosomal subunits and their associated mRNAs are segregated based on 

density in a sucrose gradient.  Fractions of this gradient are inspected by a spectrophotometer 

to assess absorbance at 260nm.  By tracing these absorbances over each fraction, we can 

produce the beloved “polysome trace”, representing an overview of a global translational profile 

for a given population of cells.  Furthermore, RNA from these individual fractions can be isolated 

and analyzed by qRT-PCR to measure translation of an individual RNA species.   

 Knockdown of hnRNP K in 293T cells resulted in a marked change in the global polysome 

trace (Figures 43B, C).  Cells with decreased hnRNP K showed a substantial spike in the 80S 

(monosome) fraction compared to controls.  Polysomes are traditionally deemed as the 

translationally active components, as this is where the majority of new peptide bonds are 

formed.249-251  Thus, as monosomes accumulate in cells, translation generally becomes less 

active at a global scale, likely due to mRNA loading difficulties.  Therefore, decreased hnRNP K 

results in less active translation.   
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 To specifically evaluate the translational status of RUNX1, we performed qRT-PCR on 

the individual fractions comprising the polysome trace.  Compared to cells transfected with a 

scrambled control, cells with decreased hnRNP K had less RUNX1 in the 80S monosome fraction 

(Figure 43D).  Given that there was not a compensatory increase of RUNX1 in the low-molecular 

weight and high molecular weight polysome fractions, this suggests that RUNX1 may fail to load 

into complete ribosomal subunits in the absence of hnRNP K.   
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Figure 43. hnRNP K alterations affect global translation and that of RUNX1.  A. qRT-PCR 

for total RUNX1 in the indicated cell lines overexpressing hnRNP K or empty vector.  Cells were 

treated with doxycycline for 24 hours prior to harvest.  Primers in this reaction spanned exons 3-

4 of RUNX1, thus measuring the total level of transcript independent of spliced products.  B. 

Western blot of 293T cells transfected with siScramble control (siScr) or siHNRNPK for 72 hours.  

C. Polysome trace of 293T cells transfected as in panel A.  X-axis represents the fraction of 

sucrose gradient collected as a position of the length of the physical gradient (nm).  Y-axis 
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represents the absorbance of the fraction at 260nm normalized to a no protein control.  Fractions 

are labeled according to the accepted location of peaks for 40S, 60S, and 80S ribosome 

fractions.  LMW= low-molecular weight; HMW= high-molecular weight polysome fractions.  

Traces from four individual experiments are superimposed in this graph.  D. RUNX1 qRT-PCR 

from fractions collected in panel B.  Portions of this figure were modified with permission from 

Gallardo & Malaney et al., JNCI, 2019.83 
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5.4 Discussion 

 In this chapter, we identified that hnRNP K overexpression altered genome-wide RNA 

splicing.  Strikingly, Runx1 emerged as one of the most differentially spliced transcripts in this 

setting (Figure 31).  This observation, along with the data in Chapter 4 that hnRNP K stringently 

and specifically bound human and mouse RUNX1 at intron 5-6, and the role of RUNX1 as a key 

transcription factor in leukemia, we specifically honed in on the interaction between hnRNP K 

and RUNX1.   

The impact of hnRNP K on splicing of individual transcripts has been described.56, 58, 59, 

150, 151  However, to our knowledge, genome-wide analyses of splicing alterations occurring in the 

context of differential hnRNP K expression has not been described.  While we focused on 

RUNX1, these global analyses certainly provide insights for future inspection of the role of hnRNP 

K in hematopoietic splicing.   

 Our observations that hnRNP K reduction leads to inclusion of exon 6 is in line with what 

others have briefly identified.56, 149  However, these prior observations have been made in the 

context of hnRNP K knockdown.  To our knowledge, we are the first to show that overexpression 

of hnRNP K results in RUNX1 exon 6 exclusion.  This was a critical finding given our observation 

that this isoform is readily identifiable in AML patient samples (Figure 37).  Unlike other 

alternatively spliced isoforms of RUNX1, RUNX1A and RUNX1B, the isoforms we studied are 

expected to be identical in their C terminal domains.  In addition, we are confident that what we 

refer to as RUNX1DEx6 is not merely RUNX1A, as RUNX1A: 1) lacks exon 7, where our reverse 

primer for splicing PCR is placed and 2) has a predicted molecular weight of ~27kDa—

substantially less than the observed ~45kDa for RUNX1DEx6.    

Functional consequences due to loss of a single exon are biologically plausible.  The 

amino acid residues encoded in exon 6 of RUNX1 comprise a negative regulatory region, where 

SIN3A, a corepressor, binds.252  This region also limits RUNX1-DNA interactions253.  We showed 

that RUNX1DEx6 had differential transcriptional activity compared to its full-length counterpart 
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(Figure 40).  Our data suggest that this is due in part to altered cooperativity with SIN3A (Figure 

40B).  Though we did not formally test the DNA-binding affinity of RUNX1DEx6 compared to full-

length RUNX1, one group identified murine Runx1DEx6 as having increased DNA binding 

affinity.93  Consistent with that observation, another group described RUNX1DEx6 as having 

dominant negative activity over RUNX1 when evaluated in a human ovarian cancer cell line.155  

More complete evaluation of the transcriptional differences between full-length RUNX1 and 

RUNX1DEx6 in AML is ongoing in our laboratory.   

 In addition to altered transcriptional activity, we also observed increased stability of 

RUNX1DEx6 compared to full-length RUNX1 (Figure 39).  This is consistent with observations 

of murine Runx1 lacking this exon.88  Since exon 6 contains two ubiquitination sites248, the 

absence of these sites in RUNX1DEx6 may explain this apparent increase in protein stability.   

 To gather more insight into the mechanism of this hnRNP K-dependent RUNX1 exon 6 

splicing, we narrowed down domains of hnRNP K that appeared to be critical for this 

phenomenon.  Absence of the KH3 domain had a striking effect on the inclusion of exon 6, and 

reverted splicing to near wildtype levels (Figure 41).  In support of this observation, early 

descriptions of hnRNP K described poly(C) binding as mediated largely by KH3.153  However, 

other groups have concluded that all KH domains play a role in poly(C) binding.74   

Deletion of the KH3 domain in hnRNP K largely rescued RUNX1 splicing (Figure 41) and 

also abrogates an in vitro phenotype associated with hnRNP K overexpression (Figure 42).  Of 

note, the KH3 domain of hnRNP K can bind ssDNA acid as a single domain254, and is the only 

portion of the protein in which a crystal structure has been determined (in complex with 

ssDNA).255  This could be of particular interest from a therapeutic standpoint for several reasons.  

First, given the myriad of biologic functions of hnRNP K, completely eliminating this protein would 

likely be extremely toxic.  Indeed, Hnrnpk knockout mice are not viable.53  Second, hnRNP K has 

multiple functional domains, so understanding which domain to target could expedite drug 

discovery while also mitigating potential toxicity.  Finally, the existing crystal structure of the KH3 
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domain may expedite drug development, as this can be used for computer-based predictive drug 

discovery models and can also be used to structurally optimize compounds identified in cell-

based assays.  

Our studies did not evaluate other splicing factors in the context of hnRNP K 

overexpression.  It has been shown that hnRNP K competes with U2AF2 (also known as 

U2AF65) for binding at poly(C) tracts near 3’ splice sites, like that near the Runx1 intron 5-6 

junction.56  Little is known about how hnRNP K itself regulates splicing factors, though this is 

certainly a topic of great interest given the impact of hnRNP K on splicing alterations.        

 Given the vast array of hnRNP K-involved biologic processes, it seems unlikely that 

hnRNP K overexpression is oncogenic by means of a single mechanism.  To begin evaluating 

these other mechanisms, we briefly evaluated hnRNP K’s translational properties.  Indeed, our 

polysome studies indicated that hnRNP K alterations globally affect translation (Figure 43).  

Specifically, this results in disrupted translation of RUNX1.  We were not able to evaluate 

translation of full-length RUNX1 compared to RUNX1DEx6, but this would certainly be of interest.  

Given the hnRNP K binding to the 5’ UTR of RUNX1 (Figures 26, 28, 29), we anticipate that there 

would be no difference between these isoforms.  It is also notable that while hnRNP K clearly 

bound the 5’ UTR of human RUNX1 (Figure 28, 29), this hnRNP K binding site was absent in 

murine Runx1.  However, hnRNP K overexpression still resulted in increased protein expression 

of total Runx1 in mouse (Figure 38).  The mechanisms underlying this observation are unclear, 

but may be due to hnRNP K’s global modulation of translation.   

Together, our studies indicate that hnRNP K mediates splicing and translation of RUNX1, 

and overexpression of hnRNP K results in an enrichment of RUNX1DEx6 in mouse and (wo)man.   
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Chapter 6 

Discussion  
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Treatment of acute myeloid leukemia (AML) is evolving at an unprecedented pace due to 

development of drugs targeting actionable genetic lesions. This therapeutic renaissance has 

dramatically improved outcomes for many patients with AML.  However, many individuals do not 

harbor these targetable alterations, or relapse by various mechanisms.  Therefore, it is imperative 

to identify novel mechanisms controlling the fundamental biologic processes underlying 

leukemogenesis and to develop therapies that target these vital nodes of dysregulated 

proliferation, survival, and/or differentiation.  To this end, our laboratory has adopted a multistep 

approach to identify novel alterations driving hematologic malignancies.  Accordingly, we have 

identified hnRNP K, an RNA-binding protein, as a novel driver of these diseases through its 

regulation of critical oncogenes required for cell growth, survival, and differentiation.  This body 

of work focuses on the oncogenic role of hnRNP K in AML.   

In Chapter 2, we identified overexpression of hnRNP K in acute myeloid leukemia and 

observed that this overexpression was associated with inferior outcomes, including decreased 

remission durations and overall survival (Figure 5).  These data allude to an oncogenic role for 

hnRNP K when overexpressed. 

Consequently, we identified overexpression of hnRNP K as a driving event underlying 

myeloproliferation in an in vivo mouse model in Chapter 3.  Our data indicate that elevated 

hnRNP K expression is pathologic; however, the mechanisms underlying the observed 

overexpression of hnRNP K are still unclear.  Many cases of AML harbored an additional copy 

of the HNRNPK locus identified by FISH (Figure 10).  These additional copies were not part of 

any known chromosomes, indicating that the extra copies may exist as sSMCs.  Beyond the 

HNRNPK locus, the contents of these so-called sSMCs were not identified.  While these cases 

also had increased hnRNP K protein expression, it remains unclear whether the HNRNPK locus 

on the sSMC is transcriptionally active.  Identification of the regulatory elements in these sSMCs 

may shed light on mechanisms of endogenous HNRNPK regulation in diseased states.   
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It is also possible that increased hnRNP K expression may be due to trans effects—where 

alterations at another genomic location (e.g., mutated or deleted transcription factors, altered 

epigenetic regulators, etc.) influence expression of a gene at a distant locus.256  One group 

recently reported that in AML cases with del(9q) (usually associated with HNRNPK 

haploinsufficiency), those with co-occurring mutations in the transcription factor CEBPA had near 

normal HNRNPK RNA expression; del(9q) cases with unmutated CEBPA had low HNRNPK 

expression.257  Given the necessity of hnRNP K at an organismal level53, as well as the array of 

tumor types associated with its overexpression75-82, identifying the regulation of this oncogene 

would be worthy of future pursuit.  Indeed, several high-throughput methods now exist to evaluate 

possible trans effects on a more global scale.258, 259 

To evaluate the consequences of hnRNP K overexpression in vivo, we developed a 

mouse model in Chapter 3.  These mice had reduced survival and developed myeloproliferative 

phenotypes.  This model utilized retroviral transduction of fetal liver cells transplanted into 

recipient mice.  During the course of the current studies, we also developed transgenic models 

of hnRNP K overexpression using both constitutive and conditional expression in the 

hematopoietic system.  While these mice exhibited gross hematopoietic abnormalities, they failed 

to maintain reliable overexpression of the hnRNP K protein, thereby confounding the role of 

hnRNP K in disease pathogenesis in these systems.  In contrast, overexpression of hnRNP K in 

fetal liver cells was substantially more consistent.  Whether this is due to a technical aspect of 

stable viral integration or is an effect secondary to altering cells during a different stage of 

organismal development remains unclear.  This once again highlights a need to understand 

regulation of hnRNP K expression in vivo. 

In our mouse model of hnRNP K overexpression, the disease phenotypes were 

exclusively myeloid in nature (Chapter 3).  While these mice developed phenotypes substantially 

similar to those seen in Hnrnpk+/- mice, a percentage of Hnrnpk+/- animals developed lymphoid 

malignancies.53  Further supporting a role for hnRNP K in lymphoid development and 
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lymphomagenesis, mice overexpressing hnRNP K in B-cells develop overt lymphomas.83  These 

observations demonstrate that altered hnRNP K expression, in either direction, can influence 

hematopoiesis.  As Hnrnpk null mice die in utero53, evaluation of hematopoiesis in these embryos 

may elucidate the most fundamental roles of hnRNP K in blood development.  Interestingly, 

children with germline HNRNPK mutations, presumed to be inactivating insults, do not have 

grossly observable hematopoietic defects.38, 167, 260 

Several large-scale global analyses were performed to elucidate the oncogenic basis of 

hnRNP K overexpression in myeloid disease.  Consequently, we identified that the oncogenicity 

of hnRNP K may be attributed to its RNA-binding activities.  hnRNP K stringently and specifically 

binds RNA, leading to altered splicing of genes such as RUNX1.  We further showed that the 

KH3 domain of hnRNP K was largely responsible for mediating this splicing alteration (Figure 

41), and that deletion of KH3 abrogated the effects of hnRNP K overexpression (Figure 42).  

Previous reports have concluded that the RNA-binding function of hnRNP K is mediated through 

cooperative activity of its three KH domains, and binding is abrogated when any domain is 

disrupted.74, 217  Therefore, we anticipated that loss of any KH domain would alter these splicing 

effects.  We instead identified KH3 as the key domain mediating RUNX1 splicing.  This finding 

was particularly compelling, as it suggests that these KH domains have varied roles in nucleic-

acid directed processes.  Furthermore, these findings place the KH3 domain as being critical in 

the phenotypes described in this work.   

The observation that hnRNP K overexpression results in altered splicing of RUNX1, 

enriching for an isoform with altered transcriptional activity (RUNX1DEx6), is a captivating finding, 

as disrupted RUNX1 transcriptional programs have been shown to contribute to 

leukemogenesis.261, 262  In RUNX1DEx6, the DNA-binding domain of RUNX1 is predicted to 

remain intact, since the Runt-homology domain (RHD) is upstream of exon 6.263  However, the 

interaction with transcriptional co-factors and the regulation of this isoform could feasibly 

contribute to leukemogenesis.  Indeed, expression of only the RUNX1 RHD, which lacks many 
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of the regulatory elements of RUNX1, is sufficient to cause myelodysplastic syndrome in mice.261  

The lack of exon 6 described in our studies may result in broadly altered RUNX1-mediated 

transcription.  Evaluation of the transcriptome landscape of cells enriched for RUNX1DEx6 will 

be useful in clarifying this point.  To this end, our laboratory is pursuing RNA-sequencing as well 

as chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of RUNX1DEx6-

overexpressing cells. 

Well-characterized alterations in RUNX1 transcriptional programs are perhaps best 

exemplified by those observed in core-binding factor acute myeloid leukemia (CBF-AML).  Many 

cases of CBF-AML harbor t(8;21)15, which encodes a fusion protein known as RUNX1-RUNX1T1 

(also called AML1-ETO or RUNX1-CBFA2T1)16.  While globally, RUNX1-RUNX1T1 binds to 

similar genomic locations as RUNX1, vast transcriptional alterations are observed.264, 265   

The breakpoint within RUNX1 involved in t(8;21) most commonly occurs in the intron 

spanning exons 5 and 6.266, 267  However, these breakpoints are almost invariably located 5’ to 

the hnRNP K binding site, though rare instances of RUNX1-RUNX1T1 containing RUNX1 exon 

6 have been reported.268  Thus, hnRNP K is unlikely to be directly involved in alternative splicing 

of the RUNX1 portion of this gene product.  However, we have not evaluated the possibility that 

hnRNP K alters splicing of RUNX1T1, though preliminary analysis did not identify putative 

hnRNP K binding sites in this gene.  Given that several splice variants of RUNX1-RUNX1T1 have 

been reported269-271, future studies in this area may be worthwhile.  

Our initial evaluation has determined that the hnRNP K binding site in the 5’ UTR of 

RUNX1 is, however, maintained in the most common forms of t(8;21), suggesting that hnRNP K 

may be involved in RUNX1-RUNX1T1-associated leukemogenesis.  Interestingly, in cases of 

t(8;21) AML, deletions of chromosome 9q have been observed as a common secondary 

abnormality271-273, further alluding to a role for hnRNP K in this disease.  To begin evaluating this 

scenario, we have added overexpression of RUNX1-RUNX1T1 to our hnRNP K-overexpressing 
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fetal liver cells prior to transplant in recipient mice.  These mice develop frank transplantable 

leukemia, though the relative impact of hnRNP K in this setting is not yet clear.  Continuation of 

these studies to evaluate the interaction between hnRNP K and RUNX1-RUNX1T1 may provide 

valuable insight into this disease.   

Given the data presented in Chapter 5 that hnRNP K alters splicing of not only RUNX1, 

but also other genes involved in leukemia, it would be of great interest to assess the mutational 

status of splicing factor genes in these cases and others that overexpress hnRNP K.  While 

mutations in SF3B1, SRSF2, and U2AF1 are mutually exclusive events in cancers, including 

AML143, 274, 275, identification of hnRNP K overexpression as yet another mutually exclusive event 

would strongly indicate that a major mechanism of hnRNP K’s oncogenicity stems from its 

deleterious effects on alternative splicing.  Furthermore, comparing splicing alterations in AML 

patients with hnRNP K overexpression to splicing alterations in patients harboring splicing factor 

mutations could also shed light on recurrently altered splicing events that may underlie 

leukemogenic transformation.   

In light of the vast array of cellular processes in which hnRNP K appears to be involved, 

the possibility that hnRNP K exerts oncogenic functions through mechanisms beyond altered 

splicing of RUNX1 must be acknowledged.  Consistent with this sentiment, mice exclusively 

expressing Runx1DEx6 exhibit aberrant hematopoiesis, but do not develop leukemia.149  In our 

previous work evaluating hnRNP K-overexpression in the setting of B-cell lymphomas, disease 

was driven largely via hnRNP K’s interactions with MYC, where it stabilized the MYC transcript 

and promoted c-MYC translation.83  While we did not extensively evaluate the hnRNP K-MYC 

interaction in the current studies, it remains possible that MYC alterations could contribute to the 

observed phenotypes.  Indeed, our collaborators have described c-MYC overexpression as an 

important prognostic factor in AML.276  Furthermore, hnRNP K overexpression resulted in global 

gene expression and splicing alterations—underscoring the notion that altered RUNX1 splicing 

may only represent a portion of the oncogenic facets of hnRNP K overexpression.   
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To provide a therapeutic output for our findings, work is currently underway in our 

laboratory to screen compounds that kill leukemia cells in an hnRNP K-dependent manner.  As 

splicing inhibitors have been used in early clinical trials277, 278, understanding a specific context 

for using these drugs is beneficial.  These experiments will evaluate whether hnRNP K-

overexpressing AML cells—harboring vastly altered splicing—are more sensitive to splicing 

inhibitors than cells with average hnRNP K expression.  Given that hnRNP K is itself a splicing 

inhibitor, effects seen with these drugs may represent a synthetically lethal relationship279.   

 Given the oncogenic properties of hnRNP K when overexpressed (Chapter 3, Gallardo & 

Malaney et al., 201983), it is logical that targeting this protein directly may have therapeutic 

benefit.  While no specific inhibitors of hnRNP K are currently available, few compounds have 

been reported to modify hnRNP K-dependent processes.280  Since the RNA-binding properties 

of hnRNP K appear to be most central to its oncogenic functions—whether mediating splicing 

(RUNX1; Chapter 5), or mRNA stability and translation (RUNX1, Chapter 5; MYC83)—disrupting 

this interaction is a viable approach for drug development.  To this end, our laboratory is currently 

utilizing fluorescence anisotropy assays (Figure 28) as screening tools to evaluate the capability 

of small molecule compounds to disrupt hnRNP K-RNA interactions.  Presently, several lead 

compounds have emerged that appear to effectively interrupt these interfaces.  Ongoing work in 

developing a drug to inhibit hnRNP K-RNA interactions is an exciting venture, as patients with 

AML (Chapter 2) and DLBCL83 overexpressing hnRNP K have shortened overall survival.   

Compounds that inhibit hnRNP K-RNA interactions may also find substantial utility 

outside of oncology.  For example, replication of Influenza A virus requires the splicing activity of 

hnRNP K; depletion of hnRNP K reduces the pathogenicity of this ubiquitous virus.59, 154  In 

human immunodeficiency virus-1 (HIV-1), hnRNP K acts as an inhibitory splicing factor.281  

hnRNP K has been implicated in viral pathogenesis of numerous other RNA viruses, including 

enterovirus 71 (EV71)282, dengue283, chikungunya284, sindbis285,  hepatitis B (HBV)286, and 

hepatitis C (HCV)287.  Interestingly, some of these viruses, such as HBV and HCV, have known 
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roles in oncogenic transformation.288, 289  Therefore, inhibiting hnRNP K’s RNA-directed 

processes may also be beneficial in virally-induced cancers.  Interestingly, hnRNP K has been 

implicated in the life cycles of several DNA viruses, as well.  These include herpes simplex virus-

1 (HSV1)290, Epstein-Barr virus (EBV)291, cytomegalovirus (CMV)292, and African swine fever 

virus293.  Indeed, EBV can cause lymphoma294, thereby indirectly linking hnRNP K to 

hematopoietic oncogenesis.  However, in the case of human papillomavirus (HPV), an oncogenic 

DNA virus, hnRNP K appears to inhibit translation of viral proteins, suggesting it may have anti-

viral activity in this context.65  This emphasizes that hnRNP K’s activities can vary according to 

the particular cellular context.   

In support of the notion that hnRNP K can directly promote cellular growth programs in 

tumor cells as well as promote viral infection, hnRNP K was the first described human pan-

granzyme substrate.295  This apparent dire desire to cleave and destroy this protein supports 

claims that hnRNP K is often pathogenic—particularly in high amounts.  Indeed, knockdown of 

hnRNP K sensitizes tumor cells to death mediated by cytotoxic lymphocytes.295 

Altered hnRNP K may directly or indirectly result in immunologic consequences that may 

predispose organisms to infection and/or inflammatory milieus.  As described above, hnRNP K 

may influence a cell’s propensity to viral infection—which can itself be oncogenic.  Of note, 

hnRNP K plays a role in several immunological processes.  For example, hnRNP K is required 

for the DNA cleavage involved in B-cell somatic hypermutation and class switch 

recombination.296  While these processes are inhibited with depletion of hnRNP K, the impact of 

hnRNP K overexpression has not been defined.  In T-cells, hnRNP K has been identified as an 

important target of ERK signaling and subsequent IL-2 production.297  Again, to our knowledge, 

hnRNP K overexpression has not been studied in this context.  In uninduced macrophages, 

hnRNP K has been shown to translationally repress central downstream components of TLR4 

signaling, acting to basally repress secretion of inflammatory cytokines.298  In the context of 

hnRNP K overexpression, it is feasible that such a repressive effect may be exaggerated, and 
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thus greater stimuli required to achieve an appropriate inflammatory response.  We did not 

evaluate the role of hnRNP K overexpression on the functions of these immune cells in our 

mouse models.  Thus, it is possible that the myeloproliferative phenotypes we observed were 

secondary to a vastly dysregulated immune system.  Evaluating the functional capabilities of 

component immune cells in these mice may help clarify the sincerity of this possibility.  

Additionally, future studies involving infection challenges or in-depth analysis of the cytokine 

levels in these mice would be of interest. 

Understanding the biology underlying hematopoietic disease, including AML, is what 

fundamentally allows for development of effective therapeutic modalities.  Findings from our 

studies have substantially advanced our knowledge regarding the clinical relevance and in vivo 

functions of hnRNP K and its interactions with RUNX1.  Additionally, these studies have led to 

the identification and understanding of mechanisms that drive hnRNP K-mediated 

leukemogenesis and have determined how hnRNP K overexpression cooperates with RUNX1, 

one of the most critical transcription factors in hematopoiesis.  Given the overexpression of 

hnRNP K in AML (Chapter 2), its ability to cause myeloid disease in mice (Chapter 3), and alter 

RUNX1 splicing (Chapters 4, 5), we conclude that hnRNP K is an oncogene in AML that functions 

in part via its interaction with and splicing regulation of RUNX1.    
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